
International Journal For Technological Research In Engineering

Volume 1, Issue 7, March-2014 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2013.All rights reserved. 412

ALGORITHM ON CONCATENATING N NUMBER OF LINKED

LISTS

Navrosh Singh Sehra1, Ankit Malhotra2

Department of Information Technology

Amity School of Engineering and Technology

New Delhi, India.

Abstract: Computer science has numerous important

concepts which are utilized in day to day applications.

One such topic is linked list. Linked lists are considered

as the most complex concept. In this paper, concatenation

of n number of linked lists is explained. The concatenation

of linked lists is explained through an algorithm which

depicts a better method of concatenating n number of

linked lists. Instead of traversing the elements of the

linked lists one by one and then proceeding with the

concatenation part, the algorithm maintains two arrays of

pointers to ease the process of concatenating. The

algorithm takes lesser time as the traversing part is

skipped in this algorithm.

I. INTRODUCTION

Linked lists can be defined as one of the fundamental data

structures which can be used to implement other data

structures like arrays, stacks etc. Linked list is characterized

by a sequence of number of nodes. These nodes further

consist of two parts: a value part and a linking part which is

known as pointer.

The former which holds the record or the value to be stored

is known as the element, and the latter that holds the address

of the next node in the concerned linked list is known as the

pointer; as depicted by the figure above. Several types of

linked lists persist, each having its own use. Some of them

are: singly linked list, doubly linked list, circular linked lists

etc. A plethora of operations can be used to mould the linked

lists according to the requirement of the scenario.

II. CONCATENATION OF LINKED LISTS

Concatenation of link lists can be explained as the operation

in which two or more linked lists are merged in a way that the

pointer of the last node of the former linked list, after

concatenation, points to the first node of the latter linked list,

that is, the pointer contains the address of the first node of the

latter linked list.

The usual way of concatenating a set of linked lists is to

traverse the whole linked list node by node and then make the

pointer of the last node contain the address of the first node

of the next link list, instead of a NULL that is an empty slot.

And, this process continues for concatenating any number of

linked lists. Traversing the linked list to reach the last node of

the linked list consumes most of the time; hence traversing

has been omitted from this algorithm.

III. ALGORITHM FOR CONCATENATION OF N

NUMBER OF LINK LISTS

j: Denotes the current link list.

i: Denotes the current node under of the link list under

consideration.

n: Number of link lists

ch: Denotes the choice that whether another element

needs to be entered in the current link list.

Create a basic structure for the formation of the link lists.

Declare two instances of the structure in the form of array of

pointers: beg [], end [].

Take three int variables as: n, j, i.

Take three pointers of the defined structure: *first, *tail, *x.

Enter the number of linked lists to be concatenated: n.

Repeat the following steps n (number of linked lists) times:

Allocate the memory to the first node of the linked list that is

‘first’.

Enter the first element in the link list.

Assign NULL to the pointer part of ‘first’.

Make ‘tail’ point to the ‘first’ that is the first node of the

current link list.

International Journal For Technological Research In Engineering

Volume 1, Issue 7, March-2014 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2013.All rights reserved. 413

LABEL: Enter the choice whether more nodes are to be

entered: ch

If ch= ‘yes” perform the following steps:

Allocate the memory to the ith node of the link list that is ‘x’.

Assign NULL to the pointer part of ith node.

Enter the next element in the link list.

Assign address to the pointer part of ‘tail’.

Tail=x that is, now tail points to ith node

Increment the value of i.

Now, repeat from step LABEL.

Else, beg[j] =first, that is pointer at jth position of *beg [],

points to the first node of (j+1) link list.

And, end[j] =tail, that is pointer at the jth position of *end [],

points to the last node of (j+1) link list.

Tail=beg [0], that is tail points to the first node of first link

list.

Repeat the following steps (n-1) times for concatenation of

created ‘n’ link lists:

End[i]pointer= beg [i+1] // pointer at the ith position of the

*end [], points to the last node of the (i+1) linked list, further

the pointer of that last node points to the first node of the next

link list.

Tail=beg [0]

While (tail! = NULL)

Display the final concatenated linked lists.

IV. EXPLANATION

Algorithm will now be explained through an example. As

depicted through the figure below, four linked list are

considered, which are to be concatenated using the algorithm

described in this paper.

*beg [] and *end [] which are arrays of pointers, are

declared, which points to the first and the last node of all the

linked lists respectively.

The basic notion of the algorithm is explained in the

following steps:

1. Entering the linked lists.

2. Maintaining two arrays of pointers that is * beg []

and *end [], whose functions have already been

explained.

3. Lastly, to concatenate them, the essence of this

algorithm is used. All the linked lists under

consideration are concatenated at once by making

the pointer at the ith position of the end[i], to point

to the first node of the (i+1) linked list, which is in

turn pointed to by the pointer at (i+1) position of

the *beg[]. (End[i]pointer= beg [i+1]).

4. Concatenated linked lists are displayed.

The example in which four linked list was considered are

concatenated in a similar fashion. The pointer at the 1st

position of the *end [] points to the last node of the first

linked list. And, the pointer at the first position of the *beg [

] points to the first node of the first link list, similarly second

pointer in *beg [] will point to the first node of the second

linked list.

The algorithm then eases the process of concatenating these

four linked list as, the first pointer of *end [] is made to point

to the last node of the first linked list and this node is made to

point to the first node of the second linked list, as this first

node of the second linked list is pointed to by the pointer at

the second position the *beg []. Thus the first two linked lists

are concatenated, and by following the same principle all the

other linked lists are concatenated to form a single linked list.

International Journal For Technological Research In Engineering

Volume 1, Issue 7, March-2014 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2013.All rights reserved. 414

V. CONCLUSION

A unique methodology of concatenating n number of linked

list has been presented an algorithm through this paper. The

algorithm used to concatenate n number of linked list has

been tried and tested. The results have proved that the

algorithm is effective and efficient than the earlier method of

concatenating the linked list.

The concatenation process do not in involves traversing till

the last node, as in the conventional method. The newer

method simply makes use of two arrays of pointer to perform

the task of concatenation.

VI. FUTURE SCOPE

We significantly plan to extend our research on this

algorithm. By comparison with other available methods and

estimating the time complexities for both the conventional

methods and the newer algorithm, this research will reach a

whole new level.

By drawing a parallelism, and explaining through time

complexities, the scope of research in this path has just begun.

Concatenation of linked list is an open problem, thus newer

algorithms which are developed for solving this problem can

be compared with the algorithm listed in this paper.

REFERENCES

[1] www.studymode.com.

[2] citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1

 67.8667&rep=rep1&type=pdf.

[3] cse.iitkgp.ac.in/~pds/semester/2009a/slides/l9-linke

 dlist.pdf.

[4] C how to program, Deitel and Deitel, 3rd edition.

