EVALUATION OF THE CONTINUES WORKING SYSTEM IN TERMS OF RELIABILITY, FAULTS AND FAILURE MODE

Parth S. Patel¹, Nilesh H. Pancholi² Department of Mechanical Engineering ¹PG Student, ²Assistant Professor INDUS University, Ahmedabad, Gujarat, India

Abstract: Evaluate the continues working system of process industries in terms of Reliability. Study of the Reliability and its parameters like Mean time Between Failure (MTBF), Hazard Rate, Meat down Time, Operation Availability, Mean time to Repair and Inherent Availability. Plot the Bathtub Curve. Also study the faults and failure mode. Here in this paper the study is done on the RAC system of Gurukrupa Industry located at Santej, Ahmedabad.

Keywords: Low carbon steel AISI 1019, ANOVA, Regression analysis, S/N ratios, MINITAB software.

I. INTRODUCTION

Advance Techno System- Changodar Ahmedabad manufactures the Air condition and Refrigeration plant for the process industries like dairy industries, polymers industries, and metal & alloy industries, chemical industries. This Actual data is of Air-condition & Refrigeration plant of Gurukrupa Industries, Santej. Data is collected after successful installation of the plant on 30 Oct 2012 by Advance Techno System.

This plant is used exclusively to keep cool the process of printing on polyethylene bags.

Fig.1. Advance Techno System- Changodar Ahmedabad

Fig.2. Advance Techno System- Changodar Ahmedabad

II. OBJECTIVE

Study the terms and find out the Reliability from given data for the given time period (20 weeks) and its parameters like Mean time Between Failure (MTBF), Hazard Rate, Meat Down Time, Operation Availability, Mean time to Repair and Inherent Availability and Plot the Bathtub Curve.

III. BASIC TERMS & CALCULATIONS

- a) **Reliability R** (t): The probability that a system or component will perform its desired function without failure under stated conditions for a stated period of time.
- b) **MTBF:** The MTTF (Mean Time between Failures) is the expected time between failures of a repairable system. This system parameter can be calculated for the steady state. Lower and upper confidence levels for this parameter can also be calculated.
- c) $\mathbf{MTBF} = \text{Uptime (Ut)}/\text{ No. of frequency of failure (N).}$
- d) **Hazard Rate:** The probability of system failure within time t and t + 1 units, given that the system is continuously operational until time t this system parameter can be calculated for specific points in time.
- e) Hazard rate (Hr) = No. of frequency of failure (N)/Uptime (Ut) = 1/MTBF.

Months	Weeks	Duration	Total Time	Up Time	Down Time	Frequency
			Hrs	Hrs	Hrs.	of Failure *
Nov	1^{st}	2-9 Nov 2012	192	168	24	6
2012	2 nd	10-16 Nov 2012	154	140	14	4
	3 rd	17-23 Nov 2012	168	164	4	2
	4 th	24-30 Nov 2012	154	140	14	1
Dec	5^{th}	1-7 Dec 2012	168	168	0	0
2012	6 th	8-14 Dec 2012	154	140	14	1
	7 th	15-21 Dec 2012	168	162	6	1
	8 th	22-28 Dec 2012	154	140	14	1
Dec/Jan	9 th	29-4 Jan 2012/13	168	168	0	0
2013	10 th	5-11 Jan 2013	168	166	2	1
	11 th	12-18 Jan 2013	154	140	14	2
	12 th	19-25 Jan 2013	168	166	2	1
Jan/Feb	13 th	26-1 Feb 2013	154	140	14	1
2013	14 th	2-8 Feb 2013	168	165	3	1
	15 th	9-15 Feb 2013	154	140	14	1
	16 th	16-22 Feb 2013	168	167	1	1
Feb/Mar	17 th	23-1 Mar 2013	154	140	14	1
2013	18 th	2-8 Mar -2013	168	165	3	2
	19 th	9-15 Mar -2013	154	140	14	2
	20 th	16-22 Mar -2013	168	167	1	3

* Frequency failure of above data included the tripping of the system

Table.1. Data of Air-condition/Refrigeration Plant

- f. **Mean Down Time MDT** = Downtime (Dt)/ No. of frequency of failure (N)
- g. Mean Time To Repair MTTR = 0.3 X MDT
- h. Availability: The probability that a system or component is in an operable state at a specified time. Logistic delay times and administrative downtime for maintenance are not included in the calculation of availability. If you want to include these times, you would choose to calculate operational availability instead. Availability can be calculated for specific points in time. Lower and upper confidence levels can also be calculated.

Av (in) = MTBF / (MTBF + MTTR)

i. **Operational Availability:** The probability that a system or component is in an operable state at a specified time. Logistic delay times and administrative downtime for maintenance are included in the calculation of operational availability. If you want to exclude these times, you would choose to calculate availability instead.

Operational availability can be calculated for specific points in time. Lower and upper confidence levels can also be calculated.

Av(op) = MTBF / (MTBM + MDT)

j. **Calculation:** The Calculation was carried out to find reliability parameters from the collected data. Table. 2 shows the calculations.

IV. SUMMARY OF TYPES OF FAULTS OBSERVED

Many common faults in a refrigeration system could be localized visually (without the use of instruments), by hearing, by feel, and sometimes by smell. Other faults can only be detected by instruments.

The location of all forms of faults on even relatively simple refrigeration systems is conditional on a thorough knowledge of such factors as:

Week s	Total Time	Up Time	Down Time	Frequenc y	MTB F	Hazard	MDT	Operation Availabilit	MTT R	Inherent Availabilit
	Hrs	Hrs	Hrs.	of Failure	Hrs	Rate (Hrs)	Hrs	y Av(op)	Hrs.	y Av(in)
1st	192	168	24	6	28	0.0357	4	0.8750	1.2	0.9589
2nd	154	140	14	4	35	0.0286	3.5	0.9091	1.05	0.9709
3rd	168	164	4	2	82	0.0122	2	0.9762	0.6	0.9927
4th	154	140	14	1	140	0.0071	14	0.9091	4.2	0.9709
5th	168	168	0	0	0	-	-	-	-	-
6th	154	140	14	1	140	0.0071	14	0.9091	4.2	0.9709
7th	168	162	6	1	162	0.0062	6	0.9643	1.8	0.9890
8th	154	140	14	1	140	0.0071	14	0.9091	4.2	0.9709
9th	168	168	0	0	0	-	-	-	-	-
10th	168	166	2	1	166	0.0060	2	0.9881	0.6	0.9964
11th	154	140	14	2	70	0.0143	7	0.9091	2.1	0.9709
12th	168	166	2	1	166	0.0060	2	0.9881	0.6	0.9964
13th	154	140	14	1	140	0.0071	14	0.9091	4.2	0.9709
14th	168	165	3	1	165	0.0061	3	0.9821	0.9	0.9946
15th	154	140	14	1	140	0.0071	14	0.9091	4.2	0.9709
16th	168	167	1	1	167	0.0060	1	0.9940	0.3	0.9982
17th	154	140	14	1	140	0.0071	14	0.9091	4.2	0.9709
18th	168	165	3	2	82.5	0.0121	1.5	0.9821	0.45	0.9946
19th	154	140	14	2	70	0.0143	7	0.9091	2.1	0.9709
20th	168	167	1	3	55.67	0.0180	0.33	0.9940	0.1	0.9982

Table.2. Calculation Table

Fig.3. Pie Chart: 1 - Type of Faults

- a) The build-up of all components, their mode of operation and characteristics.
- b) Necessary measuring equipment and measuring techniques.

- c) All refrigeration processes in the system.
- d) The influence of the surroundings on system operation.
- e) The function and setting of controls and safety equipment.

V. OBSERVATION & CONCLUSION

- a) Plant had maximum failure rate immediate after installing (30th Oct 2012 – 4th Week of Oct), upto 3rd week.
- b) It can be say that this period is 'burn off' or 'infant mortality' period.
 c) After the 3rd week Nov 2012, failure rate decreased
- c) After the 3rd week Nov 2012, failure rate decreased and became constant upto 17th week, this period is constant failure rate region.
- d) After 17th week, again failure rate was started increases. This requires maintained of components or replacement of changes of filters of oil separator or compression or etc. Plants started trip off in this period.(annexure-1).

Failure Mode	Causes	Type of Fault	No of
		i ype of i duit	faults
1) System stopped via low-pressure control.	1) Receiver Value Closed	Visible	1
2) Low suction pressure or compressor cycling.	2) Liquid level too high.	Visible	2
3) Oil drops under joints and/or oil spots on	3) Oil and refrigerant leakage.	general	1
floor	4) Thermostatic expansion valve with	Visible	3
4) low suction pressure or compressor cycling	external pressure equalization		
	5) Thermal valve superheat too low	Visible	4
5) Abnormally severe frosting	6) Room thermostat defect	Sense	1
6) Air temperature in cold room too high		X 7' '1 1	~
1) Liquid level too low	1) Overcharged evaporator	V1sible	5
2) Dew of frost on compressor infet side	2) Superneat at evaporator outlet too low	v 1sible	0
3) Blown fuses.	3)Overload on system or short-	Visible	7
4) Air temperature in cold room too high.	circuiting	sense	2
	4) Room thermostat defect		
1) Condensing pressure too low	1) Water quantity too large.	measure	1
2) Liquid level too high	2) Overcharged system	visible	8
Suction pressure too low (solenoid cool than tubing)	Solenoid valve sticks	Feel	1
system stopped	Overload on system or short	visible	9
Liquid and vanour hubbles in sight glass	Insufficient liquid in system	Visible	10
		VISIDIE	10
System stopped.	Overload on system	General	2
Cut-out pressure controls or thermostats	Setting error, equipment error	General	3
1)Suction pressure too high	1)Thermostatic expansion valve superheat setting too low	Measure	2
2) Suction gas temperature too low.	2) Repair HE heat exchanger	Measure	3
Discharge line temperature too high.	Leaking suction or discharge valves	Measure	4
Moisture indicator discolored Yellow	Moisture in system	visible	11
Liquid hammer	Knocking sound during operation, Oil boiling	hear	1
Air humidity in room too low.	Load on room too high because of Cold room poorly insulated	measure	5
Pure vapour in sight glass.	Insufficient liquid in system	visible	12
System stopped	Cut-out pressure controls or thermostats, setting error	general	4
Oil drops under joints and/or oil spots on floor	Oil and refrigerant leakage.	general	5
1) Filter drier cold	1) Partial blocking of dirt strainer in	measure	6
2) Increased condensing pressure, Reduced refrigeration output	2) Dirt, e.g. grease or dust, sawdust,	visible	13
1)Suction pressure too low	1) Filter drier partly blocked.	Measure	7
2)Air temperature is too high	2)Room thermostat defect	Feel	2
3) Fan stopped.	3)Motor defect	visible	14
	Maintenance required		

Table.3. Types of faults

Fig.4. Graph: 1 BathTube Curve

Condition monitoring system suggested for this plant as there is near about 50% visible and 25% measurable fault. Routine Maintenance plan can be suggested

Annexure -1

REFERENCES

[1] E Balaguruswamy. Reliability Engineering. Tata McGraw Hill, 2010.