
International Journal For Technological Research In Engineering

Volume 1, Issue 8, April-2014 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2013.All rights reserved. 567

DYNAMICALLY INTRUSION DETECTION SYSTEM MODEL

Md Nurul Hasan1, Mr. Ar. Arunachalam2
1Student, 2M. Tech Guide

Department of Computer Science

Bharath University, Chennai

Tamil Nadu, India.

Abstract: An intrusion detection system (IDS) is a security

layer used to detect ongoing intrusive activities in

information systems. Traditionally, intrusion detection

relies on extensive knowledge of security experts, in

particular, on their familiarity with the computer system to

be protected. The system is evaluated using the KDDCup’99

intrusion detection dataset. Experimental results show that

the system achieves up to 35% improvement in terms of

misclassification cost when compared with a system lacking

the tuning feature. If only 10% false predictions are used to

tune the model, the system still achieves about 30%

improvement. Moreover, when tuning is not delayed too

long, the system can achieve about 20% improvement, with

only 1.3% of the false predictions used to tune the model..

Keywords: Attack detection model, classification, data

mining, Intrusion detection, learning algorithm, data

stream algorithm.

1. INTRODUCTION

Intrusion detection relies on the extensive knowledge of

security experts, in particular, on their familiarity with the

computer system to be protected. To reduce this dependence,

various data-mining and machine learning techniques have

been used in research projects: Audit Data Analysis and

Mining (ADAM) [1] combined the mining of association

rules and classification to discover attacks from network

traffic data. The Information and Systems Assurance

Laboratory (ISA) intrusion detection system (IDS) employed

multiple statistics-based analysis techniques, including chi-

square [2] and exponentially weighted moving averages

based on statistical process control [3], Mining Audit Data

for Automated Models for Intrusion Detection (MAMAD ID)

[5] applied association rules and a frequent episodes

program. The Minnesota Intrusion Detection System

(MINDS) [6] included a density-based outlier detection

module and an association-pattern analysis module to

summarize network connections. The quality of training data

has a large effect on the learned model. In intrusion

detection, however, it is difficult to collect high-quality

training data. New attacks leveraging newly discovered

security weaknesses emerge quickly and frequently. It is

impossible to collect all related data on those new attacks to

train a detection model before those attacks are detected and

understood. In addition, due to the new hardware and

software deployed in the system, system and user behaviors

will keep on changing, which causes degradation in the

performance of detection models. As a consequence, a fixed

detection model is not suitable for an IDS. Instead, after an

IDS is deployed, its detection model has to be tuned

continually. For commercial products (mainly

signature/misuse-based IDS), the main tuning method has

been to filter out signatures to avoid generating noise [8] and

add new signatures. In data-mining-based intrusion

detection, system parameters are adjusted to balance the

detection and false rates. Such tuning is coarse, and the

procedure must be performed manually by the system

operator. Other methods that have been proposed rely on

“plugging in” a special purpose sub model [9] or superseding

the current model by dynamically mined new models [10]–

[12]. Training a special-purpose model forces the user to

collect and construct high-quality training data. Mining a

new model in real time from unverified data incurs the risk

that the model could be trained by an experienced intruder to

accept abnormal data. In this paper, we present tuning IDS

by some algorithm the quality of training data has a large

effect on the learned model. In intrusion detection, however,

it is difficult to collect high-quality training data. New

attacks leveraging newly discovered security weaknesses

emerge quickly and frequently. It is impossible to collect all

related data on those new attacks to train a detection model

before those attacks are detected and understood. In addition,

due to the new hardware and software deployed in the

system, system and user behaviors will keep on changing,

which causes degradation in the performance of detection

models. As a consequence, a fixed detection model is not

suitable for an IDS. Instead, after an IDS is deployed, its

detection model has to be tuned continually. For commercial

products (mainly signature/misuse-based IDS), the main

tuning method has been to filter out signatures to avoid

generating noise [8] and add new signatures. In data-mining-

based intrusion detection, system parameters are adjusted to

balance the detection and false rates. Such tuning is coarse,

and the procedure must be performed manually by the

system operator. Other methods that have been proposed rely

on “plugging in” a special purpose sub model [9] or

superseding the current model by dynamically mined new

models [10]–[12]. Training a special-purpose model forces

the user to collect and construct high-quality training data.

Mining a new model in real time from unverified data incurs

the risk that the model could be trained by an experienced

intruder to accept abnormal data. In this paper, we present.

Our system takes advantage of the analysis of alarms by the

system operators: the detection model is tuned on-the-fly

with the verified data, yet the burden on the system operator

International Journal For Technological Research In Engineering

Volume 1, Issue 8, April-2014 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2013.All rights reserved. 568

is minimized. Experimental results show that the system

achieves up to 35% improvement in terms of

misclassification cost compared with the performance of a

system lacking the model tuning procedure. If only 10% false

predictions are used to tune the model, the system still

achieves roughly 30% improvement. When tuning is delayed

only a short time, the system achieves about 20%

improvement with only 1.3% false predictions used to tune

the model. Selective verification on predictions with lo

Experimental results show that the system achieves up to

35% improvement in terms of misclassification cost

compared with the performance of a system lacking the

model tuning procedure. If only 10% false predictions are

used to tune the model, the system still achieves roughly 30%

improvement. When tuning is delayed only a short time, the

system achieves about 20% improvement with only 1.3%

false predictions used to tune the model. Selective

verification on predictions with low.

2. RELATED WORK

Most existing IDS are optimized to detect attacks with high

accuracy. However, they still have various disadvantages that

have been outlined in a number of publications and a lot of

work has been done to analyze IDS in order to direct future

research (cf. [5], for instance). Besides others, one drawback

is the large amount of alerts produced. Recent research

focuses on the correlation of alerts from (possibly multiple)

IDS. If not stated otherwise, all approaches outlined in the

following present either online algorithms or—as we see it—

can easily be extended to an online version. Probably, the

most comprehensive approach to alert correlation is

introduced in [6]. One step in the presented correlation

approach is attack thread reconstruction, which can be seen

as a kind of attack instance recognition. No clustering

algorithm is used, but a strict sorting of alerts within a

temporal window of fixed length according to the source,

destination, and attack classification (attack type). In [7], a

similar approach is used to eliminate duplicates, i.e., alerts

that share the same quadruple of source and destination

address as well as source and destination port. In addition,

alerts are aggregated (online) into predefined clusters (so-

called situations) in order to provide a more condensed view

of the current attack situation. The definition of such

situations is also used in [8] to cluster alerts. In [9], alert

clustering is used to group alerts that belong to the same

attack occurrence. Even though called clustering, there is no

clustering algorithm in a classic sense. The alerts from one

(or possibly several) IDS are stored in a relational database

and a similarity relation—which is based on expert rules—is

used to group similar alerts together. Two alerts are defined

to be similar, for instance, if both occur within a fixed time

window and their source and target match exactly. As already

mentioned, these approaches are likely to fail under real-life

conditions with imperfect classifiers (i.e., low-level IDS)

with false alerts or wrongly adjusted time windows. Another

approach to alert correlation is presented in [10]. A weighted,

attribute-wise similarity operator is used to decide whether to

fuse two alerts or not. However, as

already stated in [11] and [12], this approach suffers from

the high number of parameters that need to be set. The

similarity operator presented in [13] has the same

disadvantage— there are lots of parameters that must be set

by the user and there is no or only little guidance in order to

find good values. In [14], another clustering algorithm that is

based on attribute-wise similarity measures with user defined

parameters is presented. However, a closer look at the

parameter setting reveals that the similarity measure, in fact,

degenerates to a strict sorting according to the source and

destination IP addresses and ports of the alerts. The

drawbacks that arise thereof are the same as those mentioned

above. In [15], three different approaches are presented to

fuse alerts. The first, quite simple one groups alerts

according to their source IP address only. The other two

approaches are based on different supervised learning

techniques. Besides a basic least-squares error approach,

multi-layer perceptions, radial basis function networks, and

decision trees are used to decide whether to fuse a new alert

with an already existing meta-alert (called scenario) or not.

Due to the supervised nature, labeled training data need to be

generated which could be quite difficult in case of various

attack instances. The same or quite similar techniques as

described so far are also applied in many other approaches to

alert correlation, especially in the field of intrusion scenario

detection. Prominent research in scenario detection is

described in [16],[17], [18], for example. More details can be

found in [19].In [20], an offline clustering solution based on

the CURE algorithm is presented. The solution is restricted

to numerical attributes. In addition, the number of clusters

must beset manually. This is problematic, as in fact it

assumes that the security expert has knowledge about the

actual number of ongoing attack instances. The alert

clustering solution described in [11] is more related to ours.

A link-based clustering approach is used to repeatedly fuse

alerts into more generalized ones. The intention is to

discover the reasons for the existence of the majority of

alerts, the so-called root causes, and to eliminate them

subsequently. An attack instance in our sense can also be

seen as a kind of root cause, but in [11] root causes are

regarded as “generally persistent” that does not hold for

attack instances that occur only within a limited time

window. Furthermore, only root causes that are responsible

for a majority of alerts are of interest and the attribute-

oriented induction algorithm is forced “to find large clusters”

as the alert load can thus be reduced at most. Attack

instances that result in a small number of alerts (such as PHF

or FFB) are likely to be ignored completely. The main

difference to our approach is that the algorithm can only be

used in an offline setting and is intended to analyze historical

alert logs. In contrast, we use an online approach to model

the current attack situation. The alert clustering approach

described in [12] is based on [11] but aims at reducing the

false positive rate. The created cluster structure is used as a

filter to reduce the amount of created alerts. Those alerts that

are similar to already known false positives are kept back,

whereas alerts that are considered to be legitimate (i.e.,

dissimilar to all known false positives) are reported and not

International Journal For Technological Research In Engineering

Volume 1, Issue 8, April-2014 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2013.All rights reserved. 569

further aggregated. The same idea—but based on a different

offline clustering algorithm—is presented in [21]. A

completely different clustering approach is presented in [22].

There, the reconstruction error of an autoassociator neural

network (AA-NN) is used to distinguish different types of

alerts. Alerts that yield the same (or a similar) reconstruction

error are put into the same cluster. The approach can be

applied online, but an offline training phase and training data

are needed to train the AA-NN and also to manually adjust

intervals for the reconstruction error that determine which

alerts are clustered together. In addition, it turned out that due

to the dimensionality reduction by the AA-NN, alerts of

different types can have the same reconstruction error which

leads to erroneous clustering. In our prior work, we applied

the well-known c-means clustering algorithm in order to

identify attack instances [23]. However, this algorithm also

works in a purely offline manner.

3. PROPOSED SYSTEM

A. Prediction Model and Learning Algorithm

Different model representations have been used in detection

Models presented in the literature, among them are rules

(Signatures) [1], [5], decision trees [13], neural networks

[14], statistical models [2], [3], or Petri nets [15]. In order to

allow tuning parts of the model easily and precisely without

affecting the rest of the model, we choose rules to represent

the prediction model. In an earlier study, this model has

demonstrated a good performance [16]. Our model consists

of a set of binary classifiers learned from the training dataset

by the simple learner with iterative pruning to produce error

reduction (SLIPPER) [17], a binary learning algorithm. The

initial creation of the detection model is shown in the block

diagram in Fig. 1. The preprocessor prepares all binary

training datasets from the original training dataset. The

algorithm capturing this

Architecture diagram

Fig. 1. Creation of initial model for didsm.

Preprocessor and the details of creating the prediction model

have been described in [16]. The binary SLIPPER learning

algorithm proposed by Cohen and Singer [17] is a general-

purpose rule-learning system based on confidence-rate

boosting [18]. A weak learner is boosted to find a single

weak hypothesis (an IF–THEN rule), and then, the training

data are reweighted for the next round of boosting. Unlike

other conventional rule learners, data covered by learned

rules are not removed from the training set. Such data are

given lower weights in subsequent boosting rounds. All weak

hypotheses from each round of boosting are compressed and

simplified, and then combined into a strong hypothesis,

constituting a binary classifier. An example of a binary

classifier. This example is part of a binary classifier of the

initial model in our system described below. Each rule starts

with a predictive label. Followed by two parameters used to

calculate the confidence in predictions made by this rule. The

keyword “IF” introduces the conditions of the rule. These

conditions are used to check whether the rule covers a data

sample.

Fig. 2. Prediction on new data in didsm

In SLIPPER, an objective function such as (6) from [17] is

used to search for a good rule with positive confidence

during each round of boosting. The selected rule with

positive confidence is compared with a default rule with

negative confidence to determine the result of boosting. A

default rule covers all data records and, thus, does not have

conditions; all default rules are compressed into a single final

default rule. For example, SLIPPER is a time-efficient

learning algorithm. For example, it took 2 h to learn a model

from roughly half million training records on a Pentium IV

system with a 512-MB RAM running at 2.6 GHz.

4. ILLUSTRATION OF FEEDBACK SESSIONS

A. Prediction Engine

Binary learning algorithms can only build binary classifiers.

For intrusion detection, the minimal requirement is to alarm

in case intrusive activity is detected. Beyond alarms,

operators expect that the IDS will report more details

regarding possible attacks, at least the attack type. We group

attacks into categories such as denial-of-service (dos),

probing (probe), remote-to local (r2l), and user-to-root (u2r).

Correspondingly, we constructed five binary classifiers from

the training dataset. One binary classifier (“BC-Normal”)

predicts whether the input data record is normal. The other

four binary classifiers (“BC-Probe,” “BC-Dos,” “BC-U2r,”

and “BC-R2l”) predict whether the input data record

constitutes a particular attack. For example, the binary

classifier “BC-Probe” predicts whether the input data record

is a probing attack. The prediction engine in our system

consists of five binary prediction engines together with a

final arbiter, as shown in Fig. 2. We refer to this

multiclassifier version of SLIPPER as MC-SLIPPER. The

training procedure used to construct the initial model for

MC-SLIPPER is described in detail in [16]. Each binary

prediction engine outputs a prediction result on the input data

according to its binary classifier, and the final arbiter

determines and reports the result to the system operator. The

binary prediction engine is the same as the final hypothesis

in SLIPPER [17],

International Journal For Technological Research In Engineering

Volume 1, Issue 8, April-2014 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2013.All rights reserved. 570

B. Sensor Networks

The extensive number of research work in this area has

appeared in the literature. Due to the limited energy budget

available at sensor nodes, the primary issue is how to develop

energy-efficient techniques to reduce communication and

energy costs in the networks. Approximate-based data

aggregation techniques have also been proposed. The idea is

to tradeoff some data quality for improved energy efficiency.

Silberstein et al. develop a sampling-based approach to

evaluate approximate top-k queries in wireless sensor

networks. Based on statistical modeling techniques, a model-

driven approach was proposed in to balance the confidence of

the query answer against the communication cost in the

network. Moreover, continuous top-k queries for sensor

networks have been studied in and. In addition, a distributed

threshold join algorithm has been developed for top-k

queries. These studies, considering no uncertain data, have a

different focus from our study.

C. Data pruning

The cluster heads are responsible for generating uncertain

data tuples from the collected raw sensor readings within

their clusters. To answer a query, it’s natural for the cluster

heads to prune redundant uncertain data tuples before

delivery to the base station in order to reduce communication

and energy cost. The key issue here is how to derive a

compact set of tuples essential for the base station to answer

the probabilistic top-k queries.

D. Performance evaluation

In this section, we will examine how to assess the

performance of an IDS and how to improve the system based

on the experimental data. We will rely on the KDDCup’99

dataset provided by Defense Advanced Research Projects

Agency (DARPA) as this dataset contains several weeks of

attack data and has been used to assess the performance of a

number of IDS. While this dataset contained labeled data, in

order to mitigate the burden of manually labeling training

data in real-life situations, we developed a supporting tool.

We will use the total misclassification cost (TMC) as the

primary indicator of system performance. In order to be able

to improve our system based on the experimental results, we

also develop a methodology of studying the performance of

individual rules.

E. Dataset

A proper dataset must be obtained to facilitate

experimentation. In our experimental environment, it was

difficult to obtain real-life datasets due to limitations of

network size and limited external access. Unfortunately,

usable datasets are rarely published as these involve sensitive

information such as the network architecture, security

mechanisms, and so on. Thus, in this paper, we rely on the

publicly available KDDCup’99 intrusion detection dataset.

This dataset was collected from a network simulating a

typical U.S. Air Force LAN and also reflects dynamic change

within the network. The KDDCup’99 intrusion detection

dataset was developed based on the 1998 DARPA intrusion

detection evaluation program, prepared and managed by the

MIT Lincoln Laboratories. The objective of this program

was to survey and evaluate intrusion detection research.

Lincoln Laboratories set up an environment to acquire nine

weeks of raw TCP data for a local area network (LAN)

simulating a typical U.S. Air Force LAN. This LAN was

operated as if it is a true Air Force environment, and it was

subjected to multiple attacks. The raw training data dump

was about 4 GB of compressed binary TCP data from the

first seven weeks of network traffic alone. The data dump

was processed into roughly five million connection records.

The test data were constructed from the network traffic in the

last two weeks, which yielded around two million connection

records. In the KDDCup’99 dataset, each record represents a

TCP/IP network connection with a total of 41 features.

Domain experts derived some of the features related to

content [5]. Statistical features were generated using a 2-s

time window. Five classes of connections were identified,

including normal network connections. he four classes of

abnormal connections (attacks) are dos, probing (probe), r2l,

and u2r. Each attack class is further divided into subclasses.

For example, class dos includes subclass smurf, neptune,

back, teardrop, and so on, representing

5. ASSOCIATED WORK

In recent years, many works have been done to Here; we

review representative work in the areas of 1) top-k Query

processing in wireless sensor networks, and 2) top-k query

processing on uncertain data. Top-k query processing in

sensor networks. An extensive number of research works in

this area has appeared in the literature [21], [24], [25], [26]).

Due to the limited energy budget available at sensor nodes,

the primary issue is how to develop energy-efficient

techniques to reduce communication and energy costs in the

networks. TAG [21] is one of the first studies in this area. By

exploring the semantics of aggregate operators (e.g., sum,

avg, and top-k), in-network processing approach is adopted

to suppress redundant data transmissions in wireless sensor

networks. Approximate-based data aggregation techniques

have also been proposed [27], [25].

 The idea is to tradeoff some data quality for improved

energy efficiency. Silberstein et al. develop a sampling-based

approach to evaluate approximate on statistical modeling

techniques, a model-driven approach was proposed in [5] to

balance the confidence of the query answer against the

communication cost in the network. Moreover, continuous

top-k queries for sensor networks have been studied in [28]

and [29]. In addition, a distributed threshold join algorithm

has been developed for top-k queries [24]. These studies,

considering no uncertain data, have a different focus from

our study. Top-k query processing on uncertain data. While

research works on conventional top-k queries are mostly

based on some deterministic scoring functions, the new

factor of tuple membership probability in uncertain databases

makes evaluation of probabilistic top-k queries very

complicated since the top-k answer set depends not only on

the ranking scores of candidate tuples but also their

probabilities [8]. For uncertain databases, two interesting

International Journal For Technological Research In Engineering

Volume 1, Issue 8, April-2014 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2013.All rights reserved. 571

top-k definitions (i.e., U-Topk and U-kRanks) and A_-like

algorithms are proposed [17]. U-Topk returns a list of k

tuples that has the highest probability to be in the top-k list

over all possible worlds. U-kRanks returns a list of k tuples

such that the ith record has the highest probability to be the

ith best record in all possible worlds. In [13], PT-Topk query,

which returns the set of tuples with a probability of at least p

to be in the top-k lists in the possible worlds, is studied.

Inspired by the concept of dominate set in the top-k query, an

algorithm which avoids unfolding all possible worlds is

given. Besides, a sampling method is developed to quickly

compute an approximation with quality guarantee to the

answer set by drawing a small sample of the uncertain data.

In [19], the expected rank of each tuple across all possible

worlds serves as the ranking function for finding the final

answer. In [30], U-Topk and U-kRank queries are improved

by exploiting their stop conditions. In [31], all existing top-k

semantics have been unified by using generating functions.

Recently, a study on processing top-k queries over a

distributed uncertain database is reported in [14] and [23]. Li

et al. [14] only support top-k queries with the expected

ranking semantic. On the contrary, our proposal is a general

approach which is applicable to probabilistic top-k queries

with any semantic. Furthermore, instead of repeatedly

requesting data which may last for several rounds, our

protocols are guaranteed to be completed within no more

than two rounds.

 These differences uniquely differentiate our effort from

[14]. Our previous work [23] as the initial attempt only

includes the concept of sufficient set. In this paper, besides of

sufficient set, we propose another important concept of

necessary set. With the aid of these two concepts, we further

develop a suite of algorithms, which show much better

performance than the one in [23]. Probabilistic ranked

queries based on uncertainty at the attribute level are studied

in [32], [33], and [19]. A unique study that ranks tuples by

their probabilities satisfying the query is presented in [12].

Finally, uncertain top-k query is studied under the setting of

streaming databases where a compact data set is exploited to

support efficient slide window top-k queries [18]. We will

apply sufficient set and necessary set to sensor networks with

tree topology, to further improve query processing

performance by facilitating sophisticated in-network filtering

at the intermediate nodes along the routing path to the root

6. EXPERIMENTAL SETUP AND RESULT

Table 1

Data distribution in the kddcup’99 dataset

Popular types of dos attacks. Two training datasets from the

first seven weeks of network traffic are available. The full

dataset includes about five million records and a smaller

subset containing only 10% of the data records but with the

same distribution as the full dataset. We used the 10% subset

to train our binary SLIPPER classifiers. The labeled test

dataset includes 311 029 records with a different distribution

of attacks, then the training dataset (see Table I). Only 22 out

of the 39 attack subclasses in the test data were present in the

training data. The different distributions between the training

and test datasets and the new types of attacks in the test

dataset reflect the dynamic change of the nature of attacks

common in real-life systems. Sabhnani and Serpen analyzed

the dissimilarity between the training dataset and the test

dataset [20].

A. System Performance

We evaluated our system on the KDDCup’99 dataset and

compared it with other systems, including a system built

from PNrules [22], the KDDCup’99 winner [23] and runner-

up [24], a multiple-classifier system [25], and a system based

on repeated incremental pruning to produce error reduction

(RIPPER) [26]. More details on these systems can be found

in Section V. An IDS generates alarms whenever it detects

an attack while ignoring normal behavior. That is, any

classification of network connection into an attack class will

generate an alarm, while a classification as normal will not.

Security officers will pay.

Table 2

Performance comparison of various ids

Table 3

Statistical data for mc-slipper rules on test dataset

International Journal For Technological Research In Engineering

Volume 1, Issue 8, April-2014 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2013.All rights reserved. 572

different levels of attention to different types of alarms. For

example, probe alarms will typically be ignored, but an r2l

alarm will be investigated and will result in counter

measures, should it be determined to be true. To reflect the

different levels of seriousness of alarms, a misclassification

cost matrix defining the cost of each type of misclassification

is used to evaluate the results of the KDDCup’99

competition. The TMC, which is the sum of the

misclassification costs for all test data records, is the key

measurement differentiating the performance of each system.

Table II compares the performance of each evaluated system.

We examine three systems based on MCSLIPPER,

considering the three arbitration strategies [16]. The TMC of

our systems is 72 494, 70 177, and 68 490, respectively. All

three are better than the KDDCup’99 contest winner, whose

TMC is 72 500 [27]. MC-SLIPPER using BP neural network

arbitration shows the best performance among the compared

systems.

 As shown in Table III, the MC-SLIPPER systems achieved

excellent TMC. However, TMC does not tell us how well

each rule performs on the test dataset. To assess system

performance along this dimension, we first extract the

sequence of prediction results for each rule from the

experimental data. Table III shows the statistical data for

individual rules from different binary classifiers. For space

reasons, we only show data for those 19 rules whose false

prediction rates are greater than 20% and which cover more

than 1% of all test data. These 19 rules contribute to 262 193

out of the 299 471 false positive predictions (87.55%) and

have the biggest negative impact on the overall performance

of our MC-SLIPPER system when tested on the KDDCup’99

test dataset to which a rule contributes. Similarly, columns

“N#” and “T#” show the false negative predictions and true

predictions for each rule, respectively.

 As can be seen from this table, the number of false

negative predictions is small compared to the number of false

positive predictions. The last column titled “FPR” is the

overall false prediction rate, computed by (P# + N#)/(P# +

N# + T#). The l in the column titles refers to the number of

successive false positive predictions. When l is equal to one,

this false prediction is an isolated false prediction. We

particularly examine the situations where long sequences of

false positive predictions occur. of rules in MC-SLIPPER.

Property 1: Isolated false predictions exist for most rules and

can amount to about 25% of all false predictions (see column

titled “l = 1”). Property 2: Often, false predictions come in

long successive prediction sequences (see the columns titled

“l ≥3,” “l ≥ 100,” and “l≥1000”).

 Long successive false prediction sequences provide an

opportunity for our system to benefit from model tuning.

Pattern where the length of successive false positive

prediction sequences l is greater than or equal to three.

Therefore, we cannot apply (9) to evaluate the benefit of

tuning. Compared to the large number of false positive

predictions shown in column “P#,” the small number of false

negative predictions shown in column “N#” can safely be

ignored. To estimate the benefit of tuning from the data in

Table III.

Pseudo code for DIDSM with full and instant tuning.

7. RELATED WORK

Sabhnani and Serpen [25] built a multiclassifier system using

Multi-layer perceptions, K-means clustering, and a Gaussian

classifier after evaluating the performance of a

comprehensive set of pattern recognition and machine

learning algorithms on the KDDCup’99 dataset. The TMC of

this multi classifier system is 71 096, and the cost per

example is 0.2285. However, the significant drawback of

their system is that the multiclassifier model was built based

on the performance of different sub classifiers on the test

dataset. Giacinto et al. [28] proposed a multiclassifier system

for intrusion detection based on distinct feature

representations: content, intrinsic, and traffic features were

used to train three different classifiers, and a decision fusion

function was used to generate the final prediction. The cost

per example is 0.2254. No confusion matrix of the prediction

is reported in their study. Kumar [26] applied RIPPER to the

KDDCup’99 dataset. RIPPER is an optimized version of

incremental reduced error pruning (IREP), which is a rule-

learning algorithm optimized to reduce errors on large

datasets. The TMC is 73 622, and the cost per example is

0.2367. Agawam and Joshi [22] proposed an improved two

stage general-to specific framework (PNrule) for learning a

rule-based model. PNrule balances support and accuracy

when inferring rules from its training dataset to overcome the

problem of small disjoints. For multiclass classification, a

cost-sensitive scoring algorithm was developed to resolve

conflicts between multiple classifiers using a

misclassification cost matrix, and the final prediction was

determined according to Bayes optimality rule. The TMC is

74 058, and the cost per example is 0.2381 when tested on

KDDCup’99 dataset. Pfahringer constructed an ensemble of

50 × 10 C5 decision trees as a final predictor using a cost-

sensitive bagged boosting algorithm [23]. The final

prediction was made according to minimal conditional risk,

which is a sum of error cost by class probabilities. This

predictor won the KDDCup’99 contest. The TMC is 72 500,

and the cost per example is 0.2331. Levin’s kernel miner

[24] is based on building the optimal decision forest. A

global optimization criterion was used to minimize the value

of the multiple estimators, including the TMCs. The tool

placed second in the KDDCup’99 contest. The TMC is 73

287 and the cost per example is 0.2356.There are two

approaches in updating the detection model: Add a sub

model or supersede the current model. Lee et al. [9]

proposed a “plug-in” method as a temporary solution. When

International Journal For Technological Research In Engineering

Volume 1, Issue 8, April-2014 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2013.All rights reserved. 573

new intrusion emerges, a simple special-purpose classifier is

trained to detect only the new attack. The new classifier is

plugged into the existing IDS to enable detection of the new

attack. The main existing detection models remain

unchanged. When a better model or a single model that can

detect the new intrusion as well as the old intrusions is

available later, the temporal model can be replaced. This

method takes advantage of the fact that training a new

specific classifier is significantly faster than retraining a

monolithic model from all data, and thus, it enables detection

of new attacks as soon as possible. However, before the new

classifier can be trained, high-quality training data should be

collected. For a very new attack, it is not an easy task to

collect the appropriate training data. Training then becomes

the job of the system operators who usually lack the

knowledge to train a model. Having the newly mined model

supersede the current detection model was presented in

various systems [10]–[12].

 The study in [10] and [11] proposed architecture to

implement adaptive model generation. In this architecture,

different detection model generation algorithms have been

developed to mine the new model on real-time data. The new

model can supersede the current model on-the-fly. The study

in [12] deployed incremental mining to develop new models

on real-time data and update the detection profile in adaptive

IDS. The profile (model) for the activity during an

overlapping sliding window is incrementally mined, and the

similarity between the recent and base profiles is evaluated.

If the similarity stays above a threshold level, the base profile

is taken to be a correct reflection of the current activities.

When the similarity falls below the threshold, the rate of

change is examined. If the change is abrupt, it is interpreted

as an intrusion. The base profile will not be updated.

Otherwise, it is treated as a normal change, and the base

profile will be updated. However, this system cannot deal

with situations where both intrusive and normal behavior

changes occur within the sliding window. Because those

models are mined on real-time data, an experienced attacker

could train the model gradually to accept intrusive activity as

normal.

8. CONCLUSION

Because computer networks are continuously changing, it is

difficult to collect high-quality training data to build intrusion

detection models. In this paper, rather than focusing on

building a highly effective initial detection model, we

propose to improve a detection model dynamically after the

model is deployed when it is exposed to new data. In our

approach, the detection performance is fed back into the

detection model, and the model is adaptively tuned. To

simplify the tuning procedure, we represent the detection

model in the form of rule sets, which are easily understood

and controlled; tuning amounts to adjusting confidence

values associated with each rule. This approach is simple yet

effective. Our experimental results show that the TMC of

DIDSM with full and instant tuning drops about35% from the

cost of the MC-SLIPPER system with a fixed detection

model. If only 10% false predictions are used to tune the

model, the system still achieves about 30% performance

improvement. When tuning is delayed by only a short time,

the system achieves 20% improvement when only 1.3% false

predictions are used to tune the model. ATIDS imposes a

relatively small burden on the system operator: operators

need to mark the false alarms after they identify them.

REFERENCES

[1] D. Barbara, J. Couto, S. Jajodia, L. Popyack, and N.Wu,

“ADAM: Detecting intrusions by data mining,” in Proc.

IEEE Workshop Inf. Assurance and Security, Jun. 2001,

pp. 11–16.

[2] N. Ye, S. Emran, X. Li, and Q. Chen, “Statistical

process control for computer intrusion detection,” in

Proc. DISCEX II, Jun. 2001, vol. 1, pp. 3–14.

[3] N. Ye, S. Vilbert, and Q. Chen, “Computer intrusion

detection through EWMA for auto correlated and

uncorrelated data,” IEEE Trans. Rel., 52, no. 1, pp. 75–

82, Mar. 2003.

[4] N. Ye, S. Emran, Q. Chen, and S. Vilbert, “Multivariate

statistical analysis audit trails for host-based intrusion

detection,” IEEE Trans. Comput., vol. 51, no. 7, pp.

810–820, Jul. 2002.

[5] W. Lee and S. Stolfo, “A framework for constructing

features and models for intrusion detection systems,”

ACMTrans. Inf. Syst. Secur., vol. 3, no. 4, pp. 227–261,

Nov. 2000.

[6] L. Ertoz, E. Eilertson, A. Lazarevic, P. Tan, J.

Srivastava, V. Kumar, and P. Dokas, The MINDS—

Minnesota Intrusion Detection System: Next Generation

Data Mining. Cambridge, MA: MIT Press, 2004.

[7] K. Julish, “Data mining for intrusion detection: A

critical review,” IBM, Kluwer, Boston, MA, Res. Rep.

RZ 3398, Feb. 2002. No. 93450.

[8] I. Dubrawsky and R. Saville, SAFE: IDS Deployment,

Tuning, and Logging in Depth, CISCO SAFE White

Paper.[Online]. Available:

http://www.cisco.com/go/safe

[9] W. Lee, S. Stolfo, and P. Chan, “Real time data mining-

based intrusion detection,” in Proc. DISCEX II, Jun.

2001, pp. 89–100.

[10] E. Eskin, M. Miller, Z. Zhong, G. Yi, W. Lee, and S.

Stolfo, “Adaptive model generation for intrusion

detection systems,” in Proc. 7th ACM Conf. Comput.

Security Workshop Intrusion Detection and Prevention,

Nov. 2000. [Online]. Available:

http://www1.cs.columbia.edu/ids/ publications/adaptive-

ccsids00.pdf

[11] A. Honig, A. Howard, E. Eskin, and S. Stolfo,

“Adaptive model generation: An architecture for the

deployment of data mining-based intrusion detection

systems,” in Data Mining for Security Applications.

Norwell, MA: Kluwer, 2002.

[12] M. Hossian and S. Bridges, “A framework for an

adaptive intrusion detection system with data mining,”

in Proc. 13th Annu. CITSS, Jun. 2001. [Online].

Available:

http://www.cs.msstate.edu/~bridges/papers/citss-

International Journal For Technological Research In Engineering

Volume 1, Issue 8, April-2014 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2013.All rights reserved. 574

2001.pdf

[13] X. Li and N. Ye, “Decision tree classifiers for

computer intrusion detection,” J. Parallel Distrib.

Comput. Prac. vol. 4, no. 2, pp. 179–180, 2003.

[14] J. Ryan, M. Lin, and R. Miikkulainen, “Intrusion

detection with neural networks,” in Proc. Advances

NIPS 10, Denver, CO, 1997, pp. 943–949.

[15] S. Kumar and E. Spafford, “A pattern matching

model for misuse intrusion detection,” in Proc. 17th

Nat. Comput. Security Conf., 1994, pp. 11–21.

[16] Z. Yu and J. Tsai, “A multi-class SLIPPER system

for intrusion detection,” in Proc. 28th IEEE Annu.

Int. COMPSAC, Sep. 2004, pp. 212–217.

[17] W. Cohen and Y. Singer, “A simple, fast, and

effective rule learner,” in Proc. Annu. Conf. Amer.

Assoc. Artif. Intell., 1999, pp. 335–342.

[18] S. Robert and S. Yoram, “Improved boosting

algorithms using confidence rated predictions,”

Mach. Learn., vol. 37, no. 3, pp. 297–336, Dec.

1999.

[19] L. Faussett, Fundamentals of Neural Networks:

Architectures, Algorithms, and Applications.

Englewood Cliffs, NJ: Prentice-Hall, 1994

[20] M. Sabhnani and G. Serpen, “Why machine learning

algorithms fail in misuse detection on KDD

intrusion detection data set,” Intel. Data Anal., vol.

8, no. 4, pp. 403–415, 2004.

[21] T. Kohonen, Self-Organizing Maps. New York:

Springer Verlag, 1997.

[22] R. Agarwal and M. Joshi, “PNrule: A new

framework for learning classifier models in data

mining (a case-study in network intrusion

detection),” in Proc. 1st SIAM Conf. Data Mining,

Apr. 2001. [Online]. Available:

http://www.siam.org/meetings/sdm01/pdf/sdm01_3

0.pdf

[23] B. Pfahringer, “Winning the KDD99 classification

cup: Bagged boosting,” ACM SIGKDD Explore.,

vol. 1, no. 2, pp. 65–66, 1999.

[24] I. Levin, “KDD-99 classifier learning contest

LLSoft’s results overview,” ACM SIGKDD

Explore., vol. 1, no. 2, pp. 67–75, 1999.

[25] M. Sabhnani and G. Serpen, “Application of

machine learning algorithms

