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Abstract: An intrusion detection system (IDS) is a security 

layer used to detect ongoing intrusive activities in 

information systems. Traditionally, intrusion detection 

relies on extensive knowledge of security experts, in 

particular, on their familiarity with the computer system to 

be protected. The system is evaluated using the KDDCup’99 

intrusion detection dataset. Experimental results show that 

the system achieves up to 35% improvement in terms of 

misclassification cost when compared with a system lacking 

the tuning feature. If only 10% false predictions are used to 

tune the model, the system still achieves about 30% 

improvement. Moreover, when tuning is not delayed too 

long, the system can achieve about 20% improvement, with 

only 1.3% of the false predictions used to tune the model.. 

Keywords: Attack detection model, classification, data 

mining, Intrusion detection, learning algorithm, data 

stream algorithm. 

 

1. INTRODUCTION 

Intrusion detection relies on the extensive knowledge of 

security experts, in particular, on their familiarity with the 

computer system to be protected. To reduce this dependence, 

various data-mining and machine learning techniques have 

been used in research projects: Audit Data Analysis and 

Mining (ADAM) [1] combined the mining of association 

rules and classification to discover attacks from network 

traffic data. The Information and Systems Assurance 

Laboratory (ISA) intrusion detection system (IDS) employed 

multiple statistics-based analysis techniques, including chi-

square [2] and exponentially weighted moving averages 

based on statistical process control [3], Mining Audit Data 

for Automated Models for Intrusion Detection (MAMAD ID) 

[5] applied association rules and a frequent episodes 

program. The Minnesota Intrusion Detection System 

(MINDS) [6] included a density-based outlier detection 

module and an association-pattern analysis module to 

summarize network connections. The quality of training data 

has a large effect on the learned model. In intrusion 

detection, however, it is difficult to collect high-quality 

training data. New attacks leveraging newly discovered 

security weaknesses emerge quickly and frequently. It is 

impossible to collect all related data on those new attacks to 

train a detection model before those attacks are detected and 

understood. In addition, due to the new hardware and 

software deployed in the system, system and user behaviors 

will keep on changing, which causes degradation in the 

performance of detection models. As a consequence, a fixed  

 

detection model is not suitable for an IDS. Instead, after an 

IDS is deployed, its detection model has to be tuned 

continually. For commercial products (mainly 

signature/misuse-based IDS), the main tuning method has 

been to filter out signatures to avoid generating noise [8] and 

add new signatures. In data-mining-based intrusion 

detection, system parameters are adjusted to balance the 

detection and false rates. Such tuning is coarse, and the 

procedure must be performed manually by the system 

operator. Other methods that have been proposed rely on 

“plugging in” a special purpose sub model [9] or superseding 

the current model by dynamically mined new models [10]–

[12]. Training a special-purpose model forces the user to 

collect and construct high-quality training data. Mining a 

new model in real time from unverified data incurs the risk 

that the model could be trained by an experienced intruder to 

accept abnormal data. In this paper, we present tuning IDS 

by some algorithm the quality of training data has a large 

effect on the learned model. In intrusion detection, however, 

it is difficult to collect high-quality training data. New 

attacks leveraging newly discovered security weaknesses 

emerge quickly and frequently. It is impossible to collect all 

related data on those new attacks to train a detection model 

before those attacks are detected and understood. In addition, 

due to the new hardware and software deployed in the 

system, system and user behaviors will keep on changing, 

which causes degradation in the performance of detection 

models. As a consequence, a fixed detection model is not 

suitable for an IDS. Instead, after an IDS is deployed, its 

detection model has to be tuned continually. For commercial 

products (mainly signature/misuse-based IDS), the main 

tuning method has been to filter out signatures to avoid 

generating noise [8] and add new signatures. In data-mining-

based intrusion detection, system parameters are adjusted to 

balance the detection and false rates. Such tuning is coarse, 

and the procedure must be performed manually by the 

system operator. Other methods that have been proposed rely 

on “plugging in” a special purpose sub model [9] or 

superseding the current model by dynamically mined new 

models [10]–[12]. Training a special-purpose model forces 

the user to collect and construct high-quality training data. 

Mining a new model in real time from unverified data incurs 

the risk that the model could be trained by an experienced 

intruder to accept abnormal data. In this paper, we present. 

Our system takes advantage of the analysis of alarms by the 

system operators: the detection model is tuned on-the-fly 

with the verified data, yet the burden on the system operator 



International Journal For Technological Research In Engineering 

Volume 1, Issue 8, April-2014                                                ISSN (Online): 2347 - 4718 

 
 

www.ijtre.com                              Copyright 2013.All rights reserved.                                                                      568 

 

is minimized. Experimental results show that the system 

achieves up to 35% improvement in terms of 

misclassification cost compared with the performance of a 

system lacking the model tuning procedure. If only 10% false 

predictions are used to tune the model, the system still 

achieves roughly 30% improvement. When tuning is delayed 

only a short time, the system achieves about 20% 

improvement with only 1.3% false predictions used to tune 

the model. Selective verification on predictions with lo 

Experimental results show that the system achieves up to 

35% improvement in terms of misclassification cost 

compared with the performance of a system lacking the 

model tuning procedure. If only 10% false predictions are 

used to tune the model, the system still achieves roughly 30% 

improvement. When tuning is delayed only a short time, the 

system achieves about 20% improvement with only 1.3% 

false predictions used to tune the model. Selective 

verification on predictions with low. 

 

2. RELATED WORK 

Most existing IDS are optimized to detect attacks with high 

accuracy. However, they still have various disadvantages that 

have been outlined in a number of publications and a lot of 

work has been done to analyze IDS in order to direct future 

research (cf. [5], for instance). Besides others, one drawback 

is the large amount of alerts produced. Recent research 

focuses on the correlation of alerts from (possibly multiple) 

IDS. If not stated otherwise, all approaches outlined in the 

following present either online algorithms or—as we see it—

can easily be extended to an online version. Probably, the 

most comprehensive approach to alert correlation is 

introduced in [6]. One step in the presented correlation 

approach is attack thread reconstruction, which can be seen 

as a kind of attack instance recognition. No clustering 

algorithm is used, but a strict sorting of alerts within a 

temporal window of fixed length according to the source, 

destination, and attack classification (attack type). In [7], a 

similar approach is used to eliminate duplicates, i.e., alerts 

that share the same quadruple of source and destination 

address as well as source and destination port. In addition, 

alerts are aggregated (online) into predefined clusters (so-

called situations) in order to provide a more condensed view 

of the current attack situation. The definition of such 

situations is also used in [8] to cluster alerts. In [9], alert 

clustering is used to group alerts that belong to the same 

attack occurrence. Even though called clustering, there is no 

clustering algorithm in a classic sense. The alerts from one 

(or possibly several) IDS are stored in a relational database 

and a similarity relation—which is based on expert rules—is 

used to group similar alerts together. Two alerts are defined 

to be similar, for instance, if both occur within a fixed time 

window and their source and target match exactly. As already 

mentioned, these approaches are likely to fail under real-life 

conditions with imperfect classifiers (i.e., low-level IDS) 

with false alerts or wrongly adjusted time windows. Another 

approach to alert correlation is presented in [10]. A weighted, 

attribute-wise similarity operator is used to decide whether to 

fuse two alerts or not. However, as 

already stated in [11] and [12], this approach suffers from 

the high number of parameters that need to be set. The 

similarity operator presented in [13] has the same 

disadvantage— there are lots of parameters that must be set 

by the user and there is no or only little guidance in order to 

find good values. In [14], another clustering algorithm that is 

based on attribute-wise similarity measures with user defined 

parameters is presented. However, a closer look at the 

parameter setting reveals that the similarity measure, in fact, 

degenerates to a strict sorting according to the source and 

destination IP addresses and ports of the alerts. The 

drawbacks that arise thereof are the same as those mentioned 

above. In [15], three different approaches are presented to 

fuse alerts. The first, quite simple one groups alerts 

according to their source IP address only. The other two 

approaches are based on different supervised learning 

techniques. Besides a basic least-squares error approach, 

multi-layer perceptions, radial basis function networks, and 

decision trees are used to decide whether to fuse a new alert 

with an already existing meta-alert (called scenario) or not. 

Due to the supervised nature, labeled training data need to be 

generated which could be quite difficult in case of various 

attack instances. The same or quite similar techniques as 

described so far are also applied in many other approaches to 

alert correlation, especially in the field of intrusion scenario 

detection. Prominent research in scenario detection is 

described in [16],[17], [18], for example. More details can be 

found in [19].In [20], an offline clustering solution based on 

the CURE algorithm is presented. The solution is restricted 

to numerical attributes. In addition, the number of clusters 

must beset manually. This is problematic, as in fact it 

assumes that the security expert has knowledge about the 

actual number of ongoing attack instances. The alert 

clustering solution described in [11] is more related to ours. 

A link-based clustering approach is used to repeatedly fuse 

alerts into more generalized ones. The intention is to 

discover the reasons for the existence of the majority of 

alerts, the so-called root causes, and to eliminate them 

subsequently. An attack instance in our sense can also be 

seen as a kind of root cause, but in [11] root causes are 

regarded as “generally persistent” that does not hold for 

attack instances that occur only within a limited time 

window. Furthermore, only root causes that are responsible 

for a majority of alerts are of interest and the attribute-

oriented induction algorithm is forced “to find large clusters” 

as the alert load can thus be reduced at most. Attack 

instances that result in a small number of alerts (such as PHF 

or FFB) are likely to be ignored completely. The main 

difference to our approach is that the algorithm can only be 

used in an offline setting and is intended to analyze historical 

alert logs. In contrast, we use an online approach to model 

the current attack situation. The alert clustering approach 

described in [12] is based on [11] but aims at reducing the 

false positive rate. The created cluster structure is used as a 

filter to reduce the amount of created alerts. Those alerts that 

are similar to already known false positives are kept back, 

whereas alerts that are considered to be legitimate (i.e., 

dissimilar to all known false positives) are reported and not 
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further aggregated. The same idea—but based on a different 

offline clustering algorithm—is presented in [21]. A 

completely different clustering approach is presented in [22]. 

There, the reconstruction error of an autoassociator neural 

network (AA-NN) is used to distinguish different types of 

alerts. Alerts that yield the same (or a similar) reconstruction 

error are put into the same cluster. The approach can be 

applied online, but an offline training phase and training data 

are needed to train the AA-NN and also to manually adjust 

intervals for the reconstruction error that determine which 

alerts are clustered together. In addition, it turned out that due 

to the dimensionality reduction by the AA-NN, alerts of 

different types can have the same reconstruction error which 

leads to erroneous clustering. In our prior work, we applied 

the well-known c-means clustering algorithm in order to 

identify attack instances [23]. However, this algorithm also 

works in a purely offline manner. 

 

3. PROPOSED SYSTEM 

A. Prediction Model and Learning Algorithm 

Different model representations have been used in detection 

Models presented in the literature, among them are rules 

(Signatures) [1], [5], decision trees [13], neural networks 

[14], statistical models [2], [3], or Petri nets [15]. In order to 

allow tuning parts of the model easily and precisely without 

affecting the rest of the model, we choose rules to represent 

the prediction model. In an earlier study, this model has 

demonstrated a good performance [16]. Our model consists 

of a set of binary classifiers learned from the training dataset 

by the simple learner with iterative pruning to produce error 

reduction (SLIPPER) [17], a binary learning algorithm. The 

initial creation of the detection model is shown in the block 

diagram in Fig. 1. The preprocessor prepares all binary 

training datasets from the original training dataset. The 

algorithm capturing this 

 

Architecture diagram 

 

Fig. 1. Creation of initial model for didsm. 

Preprocessor and the details of creating the prediction model 

have been described in [16]. The binary SLIPPER learning 

algorithm proposed by Cohen and Singer [17] is a general-

purpose rule-learning system based on confidence-rate 

boosting [18]. A weak learner is boosted to find a single 

weak hypothesis (an IF–THEN rule), and then, the training 

data are reweighted for the next round of boosting. Unlike 

other conventional rule learners, data covered by learned 

rules are not removed from the training set. Such data are 

given lower weights in subsequent boosting rounds. All weak 

hypotheses from each round of boosting are compressed and 

simplified, and then combined into a strong hypothesis, 

constituting a binary classifier. An example of a binary 

classifier. This example is part of a binary classifier of the 

initial model in our system described below. Each rule starts 

with a predictive label. Followed by two parameters used to 

calculate the confidence in predictions made by this rule. The 

keyword “IF” introduces the conditions of the rule. These 

conditions are used to check whether the rule covers a data 

sample. 

 
 

Fig. 2. Prediction on new data in didsm 

 

In SLIPPER, an objective function such as (6) from [17] is 

used to search for a good rule with positive confidence 

during each round of boosting. The selected rule with 

positive confidence is compared with a default rule with 

negative confidence to determine the result of boosting. A 

default rule covers all data records and, thus, does not have 

conditions; all default rules are compressed into a single final 

default rule. For example, SLIPPER is a time-efficient 

learning algorithm. For example, it took 2 h to learn a model 

from roughly half million training records on a Pentium IV 

system with a 512-MB RAM running at 2.6 GHz.  

 

4. ILLUSTRATION OF FEEDBACK SESSIONS 

 

A. Prediction Engine 

Binary learning algorithms can only build binary classifiers. 

For intrusion detection, the minimal requirement is to alarm 

in case intrusive activity is detected. Beyond alarms, 

operators expect that the IDS will report more details 

regarding possible attacks, at least the attack type. We group 

attacks into categories such as denial-of-service (dos), 

probing (probe), remote-to local (r2l), and user-to-root (u2r). 

Correspondingly, we constructed five binary classifiers from 

the training dataset. One binary classifier (“BC-Normal”) 

predicts whether the input data record is normal. The other 

four binary classifiers (“BC-Probe,” “BC-Dos,” “BC-U2r,” 

and “BC-R2l”) predict whether the input data record 

constitutes a particular attack. For example, the binary 

classifier “BC-Probe” predicts whether the input data record 

is a probing attack. The prediction engine in our system 

consists of five binary prediction engines together with a 

final arbiter, as shown in Fig. 2. We refer to this 

multiclassifier version of SLIPPER as MC-SLIPPER. The 

training procedure used to construct the initial model for 

MC-SLIPPER is described in detail in [16]. Each binary 

prediction engine outputs a prediction result on the input data 

according to its binary classifier, and the final arbiter 

determines and reports the result to the system operator. The 

binary prediction engine is the same as the final hypothesis 

in SLIPPER [17], 
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B. Sensor Networks 

The extensive number of research work in this area has 

appeared in the literature. Due to the limited energy budget 

available at sensor nodes, the primary issue is how to develop 

energy-efficient techniques to reduce communication and 

energy costs in the networks. Approximate-based data 

aggregation techniques have also been proposed. The idea is 

to tradeoff some data quality for improved energy efficiency. 

Silberstein et al. develop a sampling-based approach to 

evaluate approximate top-k queries in wireless sensor 

networks. Based on statistical modeling techniques, a model-

driven approach was proposed in to balance the confidence of 

the query answer against the communication cost in the 

network. Moreover, continuous top-k queries for sensor 

networks have been studied in and. In addition, a distributed 

threshold join algorithm has been developed for top-k 

queries. These studies, considering no uncertain data, have a 

different focus from our study.  

 

C. Data pruning 

The cluster heads are responsible for generating uncertain 

data tuples from the collected raw sensor readings within 

their clusters. To answer a query, it’s natural for the cluster 

heads to prune redundant uncertain data tuples before 

delivery to the base station in order to reduce communication 

and energy cost. The key issue here is how to derive a 

compact set of tuples essential for the base station to answer 

the probabilistic top-k queries.  

 

D. Performance evaluation 

In this section, we will examine how to assess the 

performance of an IDS and how to improve the system based 

on the experimental data. We will rely on the KDDCup’99 

dataset provided by Defense Advanced Research Projects 

Agency (DARPA) as this dataset contains several weeks of 

attack data and has been used to assess the performance of a 

number of IDS. While this dataset contained labeled data, in 

order to mitigate the burden of manually labeling training 

data in real-life situations, we developed a supporting tool. 

We will use the total misclassification cost (TMC) as the 

primary indicator of system performance. In order to be able 

to improve our system based on the experimental results, we 

also develop a methodology of studying the performance of 

individual rules. 

 

E. Dataset 

A proper dataset must be obtained to facilitate 

experimentation. In our experimental environment, it was 

difficult to obtain real-life datasets due to limitations of 

network size and limited external access. Unfortunately, 

usable datasets are rarely published as these involve sensitive 

information such as the network architecture, security 

mechanisms, and so on. Thus, in this paper, we rely on the 

publicly available KDDCup’99 intrusion detection dataset. 

This dataset was collected from a network simulating a 

typical U.S. Air Force LAN and also reflects dynamic change 

within the network. The KDDCup’99 intrusion detection 

dataset was developed based on the 1998 DARPA intrusion 

detection evaluation program, prepared and managed by the 

MIT Lincoln Laboratories. The objective of this program 

was to survey and evaluate intrusion detection research. 

Lincoln Laboratories set up an environment to acquire nine 

weeks of raw TCP data for a local area network (LAN) 

simulating a typical U.S. Air Force LAN. This LAN was 

operated as if it is a true Air Force environment, and it was 

subjected to multiple attacks. The raw training data dump 

was about 4 GB of compressed binary TCP data from the 

first seven weeks of network traffic alone. The data dump 

was processed into roughly five million connection records. 

The test data were constructed from the network traffic in the 

last two weeks, which yielded around two million connection 

records. In the KDDCup’99 dataset, each record represents a 

TCP/IP network connection with a total of 41 features. 

Domain experts derived some of the features related to 

content [5]. Statistical features were generated using a 2-s 

time window. Five classes of connections were identified, 

including normal network connections. he four classes of 

abnormal connections (attacks) are dos, probing (probe), r2l, 

and u2r. Each attack class is further divided into subclasses. 

For example, class dos includes subclass smurf, neptune, 

back, teardrop, and so on, representing 

 

5. ASSOCIATED WORK 

In recent years, many works have been done to Here; we 

review representative work in the areas of 1) top-k Query 

processing in wireless sensor networks, and 2) top-k query 

processing on uncertain data. Top-k query processing in 

sensor networks. An extensive number of research works in 

this area has appeared in the literature [21], [24], [25], [26]). 

Due to the limited energy budget available at sensor nodes, 

the primary issue is how to develop energy-efficient 

techniques to reduce communication and energy costs in the 

networks. TAG [21] is one of the first studies in this area. By 

exploring the semantics of aggregate operators (e.g., sum, 

avg, and top-k), in-network processing approach is adopted 

to suppress redundant data transmissions in wireless sensor 

networks. Approximate-based data aggregation techniques 

have also been proposed [27], [25].  

    The idea is to tradeoff some data quality for improved 

energy efficiency. Silberstein et al. develop a sampling-based 

approach to evaluate approximate on statistical modeling 

techniques, a model-driven approach was proposed in [5] to 

balance the confidence of the query answer against the 

communication cost in the network. Moreover, continuous 

top-k queries for sensor networks have been studied in [28] 

and [29]. In addition, a distributed threshold join algorithm 

has been developed for top-k queries [24]. These studies, 

considering no uncertain data, have a different focus from 

our study. Top-k query processing on uncertain data. While 

research works on conventional top-k queries are mostly 

based on some deterministic scoring functions, the new 

factor of tuple membership probability in uncertain databases 

makes evaluation of probabilistic top-k queries very 

complicated since the top-k answer set depends not only on 

the ranking scores of candidate tuples but also their 

probabilities [8]. For uncertain databases, two interesting 
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top-k definitions (i.e., U-Topk and U-kRanks) and A_-like 

algorithms are proposed [17]. U-Topk returns a list of k 

tuples that has the highest probability to be in the top-k list 

over all possible worlds. U-kRanks returns a list of k tuples 

such that the ith record has the highest probability to be the 

ith best record in all possible worlds. In [13], PT-Topk query, 

which returns the set of tuples with a probability of at least p 

to be in the top-k lists in the possible worlds, is studied. 

Inspired by the concept of dominate set in the top-k query, an 

algorithm which avoids unfolding all possible worlds is 

given. Besides, a sampling method is developed to quickly 

compute an approximation with quality guarantee to the 

answer set by drawing a small sample of the uncertain data. 

In [19], the expected rank of each tuple across all possible 

worlds serves as the ranking function for finding the final 

answer. In [30], U-Topk and U-kRank queries are improved 

by exploiting their stop conditions. In [31], all existing top-k 

semantics have been unified by using generating functions. 

Recently, a study on processing top-k queries over a 

distributed uncertain database is reported in [14] and [23]. Li 

et al. [14] only support top-k queries with the expected 

ranking semantic. On the contrary, our proposal is a general 

approach which is applicable to probabilistic top-k queries 

with any semantic. Furthermore, instead of repeatedly 

requesting data which may last for several rounds, our 

protocols are guaranteed to be completed within no more 

than two rounds.  

    These differences uniquely differentiate our effort from 

[14]. Our previous work [23] as the initial attempt only 

includes the concept of sufficient set. In this paper, besides of 

sufficient set, we propose another important concept of 

necessary set. With the aid of these two concepts, we further 

develop a suite of algorithms, which show much better 

performance than the one in [23]. Probabilistic ranked 

queries based on uncertainty at the attribute level are studied 

in [32], [33], and [19]. A unique study that ranks tuples by 

their probabilities satisfying the query is presented in [12]. 

Finally, uncertain top-k query is studied under the setting of 

streaming databases where a compact data set is exploited to 

support efficient slide window top-k queries [18]. We will 

apply sufficient set and necessary set to sensor networks with 

tree topology, to further improve query processing 

performance by facilitating sophisticated in-network filtering 

at the intermediate nodes along the routing path to the root  

 

6. EXPERIMENTAL SETUP AND RESULT 

 

Table 1 

Data distribution in the kddcup’99 dataset 

 

 
 

Popular types of dos attacks. Two training datasets from the 

first seven weeks of network traffic are available. The full 

dataset includes about five million records and a smaller 

subset containing only 10% of the data records but with the 

same distribution as the full dataset. We used the 10% subset 

to train our binary SLIPPER classifiers. The labeled test 

dataset includes 311 029 records with a different distribution 

of attacks, then the training dataset (see Table I). Only 22 out 

of the 39 attack subclasses in the test data were present in the 

training data. The different distributions between the training 

and test datasets and the new types of attacks in the test 

dataset reflect the dynamic change of the nature of attacks 

common in real-life systems. Sabhnani and Serpen analyzed 

the dissimilarity between the training dataset and the test 

dataset [20].  

 

A. System Performance 

We evaluated our system on the KDDCup’99 dataset and 

compared it with other systems, including a system built 

from PNrules [22], the KDDCup’99 winner [23] and runner-

up [24], a multiple-classifier system [25], and a system based 

on repeated incremental pruning to produce error reduction 

(RIPPER) [26]. More details on these systems can be found 

in Section V. An IDS generates alarms whenever it detects 

an attack while ignoring normal behavior. That is, any 

classification of network connection into an attack class will 

generate an alarm, while a classification as normal will not. 

Security officers will pay. 

 

Table 2 

Performance comparison of various ids 

 

 
 

Table 3 

Statistical data for mc-slipper rules on test dataset 
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different levels of attention to different types of alarms. For 

example, probe alarms will typically be ignored, but an r2l 

alarm will be investigated and will result in counter 

measures, should it be determined to be true. To reflect the 

different levels of seriousness of alarms, a misclassification 

cost matrix defining the cost of each type of misclassification 

is used to evaluate the results of the KDDCup’99 

competition. The TMC, which is the sum of the 

misclassification costs for all test data records, is the key 

measurement differentiating the performance of each system. 

Table II compares the performance of each evaluated system. 

We examine three systems based on MCSLIPPER, 

considering the three arbitration strategies [16]. The TMC of 

our systems is 72 494, 70 177, and 68 490, respectively. All 

three are better than the KDDCup’99 contest winner, whose 

TMC is 72 500 [27]. MC-SLIPPER using BP neural network 

arbitration shows the best performance among the compared 

systems.  

    As shown in Table III, the MC-SLIPPER systems achieved 

excellent TMC. However, TMC does not tell us how well 

each rule performs on the test dataset. To assess system 

performance along this dimension, we first extract the 

sequence of prediction results for each rule from the 

experimental data. Table III shows the statistical data for 

individual rules from different binary classifiers. For space 

reasons, we only show data for those 19 rules whose false 

prediction rates are greater than 20% and which cover more 

than 1% of all test data. These 19 rules contribute to 262 193 

out of the 299 471 false positive predictions (87.55%) and 

have the biggest negative impact on the overall performance 

of our MC-SLIPPER system when tested on the KDDCup’99 

test dataset to which a rule contributes. Similarly, columns 

“N#” and “T#” show the false negative predictions and true 

predictions for each rule, respectively.  

    As can be seen from this table, the number of false 

negative predictions is small compared to the number of false 

positive predictions. The last column titled “FPR” is the 

overall false prediction rate, computed by (P# + N#)/(P# + 

N# + T#). The l in the column titles refers to the number of 

successive false positive predictions. When l is equal to one, 

this false prediction is an isolated false prediction. We 

particularly examine the situations where long sequences of 

false positive predictions occur. of rules in MC-SLIPPER. 

Property 1: Isolated false predictions exist for most rules and 

can amount to about 25% of all false predictions (see column 

titled “l = 1”). Property 2: Often, false predictions come in 

long successive prediction sequences (see the columns titled 

“l ≥3,” “l ≥ 100,” and “l≥1000”). 

    Long successive false prediction sequences provide an 

opportunity for our system to benefit from model tuning. 

Pattern where the length of successive false positive 

prediction sequences l is greater than or equal to three. 

Therefore, we cannot apply (9) to evaluate the benefit of 

tuning. Compared to the large number of false positive 

predictions shown in column “P#,” the small number of false 

negative predictions shown in column “N#” can safely be 

ignored. To estimate the benefit of tuning from the data in 

Table III. 

 

 
 

Pseudo code for DIDSM with full and instant tuning. 

 

7. RELATED WORK 

Sabhnani and Serpen [25] built a multiclassifier system using 

Multi-layer perceptions, K-means clustering, and a Gaussian 

classifier after evaluating the performance of a 

comprehensive set of pattern recognition and machine 

learning algorithms on the KDDCup’99 dataset. The TMC of 

this multi classifier system is 71 096, and the cost per 

example is 0.2285. However, the significant drawback of 

their system is that the multiclassifier model was built based 

on the performance of different sub classifiers on the test 

dataset. Giacinto et al. [28] proposed a multiclassifier system 

for intrusion detection based on distinct feature 

representations: content, intrinsic, and traffic features were 

used to train three different classifiers, and a decision fusion 

function was used to generate the final prediction. The cost 

per example is 0.2254. No confusion matrix of the prediction 

is reported in their study. Kumar [26] applied RIPPER to the 

KDDCup’99 dataset. RIPPER is an optimized version of 

incremental reduced error pruning (IREP), which is a rule-

learning algorithm optimized to reduce errors on large 

datasets. The TMC is 73 622, and the cost per example is 

0.2367. Agawam and Joshi [22] proposed an improved two 

stage general-to specific framework (PNrule) for learning a 

rule-based model. PNrule balances support and accuracy 

when inferring rules from its training dataset to overcome the 

problem of small disjoints. For multiclass classification, a 

cost-sensitive scoring algorithm was developed to resolve 

conflicts between multiple classifiers using a 

misclassification cost matrix, and the final prediction was 

determined according to Bayes optimality rule. The TMC is 

74 058, and the cost per example is 0.2381 when tested on 

KDDCup’99 dataset. Pfahringer constructed an ensemble of 

50 × 10 C5 decision trees as a final predictor using a cost-

sensitive bagged boosting algorithm [23]. The final 

prediction was made according to minimal conditional risk, 

which is a sum of error cost by class probabilities. This 

predictor won the KDDCup’99 contest. The TMC is 72 500, 

and the cost per example is 0.2331. Levin’s kernel miner 

[24] is based on building the optimal decision forest. A 

global optimization criterion was used to minimize the value 

of the multiple estimators, including the TMCs. The tool 

placed second in the KDDCup’99 contest. The TMC is 73 

287 and the cost per example is 0.2356.There are two 

approaches in updating the detection model: Add a sub 

model or supersede the current model. Lee et al. [9] 

proposed a “plug-in” method as a temporary solution. When 
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new intrusion emerges, a simple special-purpose classifier is 

trained to detect only the new attack. The new classifier is 

plugged into the existing IDS to enable detection of the new 

attack. The main existing detection models remain 

unchanged. When a better model or a single model that can 

detect the new intrusion as well as the old intrusions is 

available later, the temporal model can be replaced. This 

method takes advantage of the fact that training a new 

specific classifier is significantly faster than retraining a 

monolithic model from all data, and thus, it enables detection 

of new attacks as soon as possible. However, before the new 

classifier can be trained, high-quality training data should be 

collected. For a very new attack, it is not an easy task to 

collect the appropriate training data. Training then becomes 

the job of the system operators who usually lack the 

knowledge to train a model. Having the newly mined model 

supersede the current detection model was presented in 

various systems [10]–[12].  

    The study in [10] and [11] proposed architecture to 

implement adaptive model generation. In this architecture, 

different detection model generation algorithms have been 

developed to mine the new model on real-time data. The new 

model can supersede the current model on-the-fly. The study 

in [12] deployed incremental mining to develop new models 

on real-time data and update the detection profile in adaptive 

IDS. The profile (model) for the activity during an 

overlapping sliding window is incrementally mined, and the 

similarity between the recent and base profiles is evaluated. 

If the similarity stays above a threshold level, the base profile 

is taken to be a correct reflection of the current activities. 

When the similarity falls below the threshold, the rate of 

change is examined. If the change is abrupt, it is interpreted 

as an intrusion. The base profile will not be updated. 

Otherwise, it is treated as a normal change, and the base 

profile will be updated. However, this system cannot deal 

with situations where both intrusive and normal behavior 

changes occur within the sliding window. Because those 

models are mined on real-time data, an experienced attacker 

could train the model gradually to accept intrusive activity as 

normal. 

 

8. CONCLUSION 

Because computer networks are continuously changing, it is 

difficult to collect high-quality training data to build intrusion 

detection models. In this paper, rather than focusing on 

building a highly effective initial detection model, we 

propose to improve a detection model dynamically after the 

model is deployed when it is exposed to new data. In our 

approach, the detection performance is fed back into the 

detection model, and the model is adaptively tuned. To 

simplify the tuning procedure, we represent the detection 

model in the form of rule sets, which are easily understood 

and controlled; tuning amounts to adjusting confidence 

values associated with each rule. This approach is simple yet 

effective. Our experimental results show that the TMC of 

DIDSM with full and instant tuning drops about35% from the 

cost of the MC-SLIPPER system with a fixed detection 

model. If only 10% false predictions are used to tune the 

model, the system still achieves about 30% performance 

improvement. When tuning is delayed by only a short time, 

the system achieves 20% improvement when only 1.3% false 

predictions are used to tune the model. ATIDS imposes a 

relatively small burden on the system operator: operators 

need to mark the false alarms after they identify them. 
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