
International Journal For Technological Research In Engineering

Volume 1, Issue 8, April-2014 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2013.All rights reserved. 600

A REVIEW ON THE FUNCTIONALITY OF DALVIK VIRTUAL

MACHINE PRESENT IN ANDROID OPERATING SYSTEM

Zeeshan I.Khan1, Vijay Gulhane2

1 Student, 2Associate Professor

Department of Computer Science and Engineering

Sipna College of Engineering and Technology, Amravati, Maharashtra, India

Abstract: Dalvik Virtual Machine which plays an important

role in the efficient execution of the application in Android

Operating System made by Google. Instead of using a

Standard JVM, the decision of making an alternative

virtual machine while using Java code in the android

application development suggest many reasons for the

efficiency as well as fast execution. The Report helps to

show the overall architecture, functionality, advantages

behind using Dalvik Virtual Machine which is treated as

the heart of Android Operating System.

Keywords: Dalvik, Stack, Register, Dex, Virtual Machines

I. INTRODUCTION

Dalvik is the process virtual machine (VM)

in Google’s Android Operating System. It is the software that

runs the apps on Android devices. Dalvik is thus an integral

part of Android, which is typically used on mobile devices

such as mobile phones and tablet computers as well as more

recently on embedded devices such as smart TVs and media

streamers. Programs are commonly written in Java and

compiled to byte code. They are then converted from Java

virtual machine-compatible Java class files to Dalvik-

compatible .dex (Dalvik Executable) and odex (Optimized

Dalvik Executable) files before installation on a device,

giving rise to the related terms odexing and de-odexing. The

compact Dalvik Executable format is designed to be suitable

for systems that are constrained in terms

of memory and processor speed. Dalvik is open-source

software. It was originally written by Dan Bornstein, who

named it after the fishing village of Dalvík in Iceland.

II. ANDROID ARCHITECTURE

III. ABOUT DALVIK

“Every Android application runs in its own process, with its

own instance of the Dalvik virtual machine. Dalvik has been

written so that a device can run multiple VMs efficiently.

The Dalvik VM executes files in the Dalvik Executable

(.dex) format which is optimized for minimal memory

footprint. The VM is register-based, and runs classes

compiled by a Java language compiler that have been

transformed into the .dex format by the included "dx" tool.

The Dalvik VM relies on the Linux kernel for underlying

functionality such as threading and low-level memory

management. Given every application runs in its own

process within its own virtual machine, not only must the

running of multiple VMs be efficient but creation of new

VMs must be fast as well.

IV. THE DEX FILE FORMAT

In standard Java environments, Java source code is compiled

into Java byte code, which is stored within .class files. The

.class files are read by the JVM at runtime. Each class in

your Java code will result in one .class file. This means that

if you have, say, one .java source file that contains one

public class, one static inner class, and three anonymous

classes, the compilation process (javac) will output 5 .class

files. On the Android platform, Java source code is still

compiled into .class files. But after .class files are generated,

the “dx” tool is used to convert the .class files into a .dex, or

Dalvik Executable, file. Whereas a .class file contains only

one class, a .dex file contains multiple classes. It is the .dex

file that is executed on the Dalvik VM. The .dex file has

been optimized for memory usage and the design is primarily

driven by sharing of data. The following diagram contrasts

the .class file format used by the JVM with the .dex file

format used by the Dalvik VM.

http://en.wikipedia.org/wiki/Google_Play
http://en.wikipedia.org/wiki/Mobile_phone
http://en.wikipedia.org/wiki/Tablet_computer
http://en.wikipedia.org/wiki/Java_programming_language
http://en.wikipedia.org/wiki/Bytecode
http://en.wikipedia.org/wiki/Java_virtual_machine
http://en.wikipedia.org/wiki/Java_virtual_machine
http://en.wikipedia.org/wiki/Java_class_file
http://en.wikipedia.org/wiki/Random_access_memory
http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Open-source_software
http://en.wikipedia.org/wiki/Open-source_software
http://en.wikipedia.org/wiki/Dalv%C3%ADk
http://en.wikipedia.org/wiki/Iceland

International Journal For Technological Research In Engineering

Volume 1, Issue 8, April-2014 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2013.All rights reserved. 601

V. ANALYZING EFFICIENT NATURE OF DALVIK

If the primary goal of utilizing shared constant pools is to

save memory, how much memory is actually being saved?

Early in the life of the .class file format, a study found that

the average size of a .class file is actually quite small. But

since the time to read the file from storage is a dominant

factor in startup time, the size of the file is still important.

When analyzing how much space each section of the .class

file takes on average: the biggest part of the Java class files is

the constant part [pool] (61 percent of the file) and not the

method part that accounts for only 33 percent of the file size.

The other parts of the class file share the remaining 5 percent.

So it is clear that optimization of the constant pool can result

in significant memory savings. The Android development

team found that the .dex file format cut the size in half of

some of the common system libraries and applications that

ship with Android.

Code Un-

Compressed

Jar

Compressed

Jar

dex file

Web

Browser

App

470,312

(100%)

232,065

(49%)

209,248

(44%)

Alarm

Clock

App

119,200

(100%)

61,658

(52%)

53,020

(44%)

VI. VMS PROCESS

Since every application runs in its own instance of the VM,

VM instances must be able to start quickly when a new

application is launched and the memory footprint of the VM

must be minimal. Android uses a concept called the Zygote

to enable both sharing of code across VM instances and to

provide fast startup time of new VM instances. The Zygote

design assumes that there are a significant number of core

library classes and corresponding heap structures that are

used across many applications. It also assumes that these

heap structures are generally read-only. In other words, this is

data and classes that most applications use but never modify.

These characteristics are exploited to optimize sharing of this

memory across processes. The Zygote is a VM process that

starts at system boot time. When the Zygote process starts, it

initializes a Dalvik VM, which preloads and pre initializes

core library classes. Generally these core library classes are

read-only and are therefore a good candidate for preloading

and sharing across processes. Once the Zygote has initialized,

it will sit and wait for socket requests coming from the

runtime process indicating that it should fork new VM

instances based on the Zygote VM instance. Cold starting

virtual machines notoriously takes a long time and can be an

impediment to isolating each application in its own VM. By

spawning new VM processes from the Zygote, the startup

time is minimized. The core library classes that are shared

across the VM instances are generally only read, but not

written, by applications. When those classes are written to,

the memory from the shared Zygote process is copied to the

forked child process of the application’s VM and written to

there. This “copy-on-write” behavior allows for maximum

sharing of memory while still prohibiting applications from

interfering with each other and providing security across

application. In traditional Java VM design, each instance of

the VM will have an entire copy of the core library class files

and any associated heap objects. Memory is not shared

across instances.

VII. USING REGISTER-BASED ARCHITECTURE

RATHER THAN STACK-BASED

ARCHITECTURE

Traditionally, virtual machine implementers have favored

stack-based architectures over register-based architectures.

This favoritism was mostly due to “simplicity of VM

implementation, ease of writing a compiler back-end (most

VMs are originally designed to host a single language and

code density (i.e., executable for stack architectures are

invariably smaller than executable for register

architectures).” The simplicity and code density comes at a

cost of performance. Studies have shown that a register-

based architecture requires an average of 47% less executed

VM instructions than the stack based architecture]. On the

other hand the register code is 25% larger than the

corresponding stack code but this increased cost of fetching

more VM instructions due to larger code size involves only

1.07% extra real machine loads per VM instruction which is

negligible. The overall performance of the register-based

VM is that it take[s], on average, 32.3% less time to execute

standard benchmarks. Given that the Dalvik VM is running

on devices with constrained processing power, the choice of

a register-based VM architecture seems appropriate.

Although register-based code is about 25% larger than stack-

based code, the 50% reduction in the code size achieved

through shared constant pools in the .dex file offsets the

increased code size so you still have a net gain in memory

usage as compared to the JVM and the .class file format.

VIII. STACK BASED VIRTUAL MACHINES

A stack based virtual machine implements the general

features described as needed by a virtual machine in the

points above, but the memory structure where the operands

are stored is a stack data structure. Operations are carried out

by popping data from the stack, processing them and pushing

in back the results in LIFO (Last in First Out) fashion. In a

stack based virtual machine, the operation of adding two

numbers would usually be carried out in the following

manner (where 20, 7, and ‘result’ are the operands):

International Journal For Technological Research In Engineering

Volume 1, Issue 8, April-2014 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2013.All rights reserved. 602

1. POP 20

2. POP 7

3. ADD 20, 7, result

4. PUSH result

Because of the PUSH and POP operations, four lines of

instructions is needed to carry out an addition operation. An

advantage of the stack based model is that the operands are

addressed implicitly by the stack pointer (SP in above

image). This means that the Virtual machine does not need to

know the operand addresses explicitly, as calling the stack

pointer will give (Pop) the next operand. In stack based

VM’s, all the arithmetic and logic operations are carried out

via Pushing and popping the operands and results in the

stack.

IX. REGISTER BASED VIRTUAL MACHINES

In the register based implementation of a virtual machine, the

data structure where the operands are stored is based on the

registers of the CPU. There is no PUSH or POP operations

here, but the instructions need to contain the addresses (the

registers) of the operands. That is, the operands for the

instructions are explicitly addressed in the instruction, unlike

the stack based model where we had a stack pointer to point

to the operand. For example, if an addition operation is to be

carried out in a register based virtual machine, the instruction

would more or less be as follows:

ADD R1, R2, R3; # Add contents of R1 and R2, store result

in R3

As it is mentioned earlier, there is no POP or PUSH

operations, so the instruction for adding is just one line. But

unlike the stack, we need to explicitly mention the addresses

of the operands as R1, R2, and R3. The advantage here is that

the overhead of pushing to and popping from a stack is non-

existent, and instructions in a register based VM execute

faster within the instruction dispatch loop. Another advantage

of the register based model is that it allows for some

optimizations that cannot be done in the stack based

approach. One such instance is when there are common sub

expressions in the code, the register model can calculate it

once and store the result in a register for future use when the

sub expression comes up again, which reduces the cost of

recalculating the expression. The problem with a register

based model is that the average register instruction is larger

than an average stack instruction, as we need to specify the

operand addresses explicitly. Whereas the instructions for a

stack machine is short due to the stack pointer, the respective

register machine instructions need to contain operand

locations, and results in larger register code compared to

stack code.

X. CONCLUSION

 The use of Dalvik Virtual Machine with Register Based

Architecture to convert a .class file into a .dex file format

which helps the application to execute in a fast manner as

well as in a own separate process.

REFERENCES

[1] David Ehringer- “The Dalvik Virtual Machine

Architecture”.

[2] http://en.wikipedia.org/wiki/Dalvik_ (software).

[3] Dalvik

(http://source.android.com/devices/tech/dalvik/).

[4] Stack based and Register based Architecture

(http://markfaction.wordpress.com/2012/07/15/stac

k-based-vs-register-based-virtual-machine-

architecture-and-the-dalvik-vm/).

