
International Journal For Technological Research In Engineering

Volume 1, Issue 9, May-2014 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2013.All rights reserved. 808

Comparison of Algorithms Used to make Automatically Identification of

Acronyms-Definitions Pairs Systems in English language

Manpreet Kaur Aulakh1, Jagroop Kaur2 (Asst. Prof)
1Computer Science Department, Punjabi University, Patiala, Malout, India.

2Department of Computer Science, UCOE, Punjabi University, Patiala, India.

Abstract: This paper addresses the task of finding acronym-

definition pairs in text. One such challenge derives from the

common and uncontrolled use of acronyms in the

literature. Each additional acronym increases the effective

size of the vocabulary for a field. Therefore, to create an

automatically generated and maintained lexicon of

acronyms, various algorithms have been developed to

match acronyms in text with their expansions. In this paper

we will give review of AFT (Acronym Finding Program),

TLA (Three Letter Acronym), Using simple algorithms with

adding constraints, Rule-based method approaches used to

extract acronyms and their expansions from text. In these

Approaches performance measured using recall and

precision.

I. INTRODUCTION
Acronym is word formed from the initial letter or letters of

each of the successive parts or major parts of a compound

term. Acronyms are a subset of abbreviations and are

generally formed with capital letters from the original word

or phrase, however many acronyms are realized in different

surface forms i.e. use of Arabic-numbers, mixed alpha-

numeric forms, low-case acronyms etc.

Properties of acronyms and expansions:

Acronyms are often defined by preceding (or following) their

first use with a textual explanation. Acronyms are used in

place of their expansions, where either reader is familiar with

the concepts and entities they stand for or their meaning is

clear from the context. Acronyms have following special

properties:

• Generally, acronyms do not appear in standard

dictionaries. To make their meaning clear, authors

may give their expansions at their first use.

• Acronyms may be nested.

• Acronyms are not necessary unique.

Acronyms are generally three to ten characters in length,

although shorter or longer acronyms do exist. Acronyms’

characters are alphabetic, numeric, and special characters

such as ‘-’, ‘/’, ‘.’ or ‘&’ etc. White spaces rarely appear. Key

differences between acronyms and other abbreviations

include the lack of symbols such as apostrophe (’) and full

stops (.) in acronyms, more standard construction and the use

of capital letters. Can’t and etc. are abbreviations but not

acronyms, in the first case both because of the inclusion of

other than initial letters and because of the inverted comma

(’) and the in second case because of the use of a (.), both

lack of capital letters. Acronym lists are available from a

number of sources, but these are static—they list acronyms

current in some domain at the time of compilation or

officially in use in a domain or organisation. While these

may be of use in specific organisational or domain they are

unlikely to be useful for an arbitrary piece of text at some

point in the future. Abbreviations such as acronyms are used

in places where either reader are familiar with the concepts

and entities they stand for or their meanings are clear from

the context of the discussion. Unlike other abbreviations,

acronyms are usually introduced in a standard format when

used for the first time in a text. Acronyms are not necessarily

unique Acronym identification is the task of processing text

to extract pairs consisting of a word (the acronym) and an

expansion (the definition), where the word is the short form

of (or stands for) the expansion. In this work, we do not

discriminate between acronyms (short forms of multiword

expressions) and abbreviations (contractions of single

words). We use the term acronym to include both cases. we

tackle the core task only. That is, given an input text, our

algorithm will attempt to extract all explicit acronym-

definition pairs. Our goal is to create a dictionary of

acronym-definition pairs specific to a single text. Many

organizations have a large number of on-line documents

such as manuals, technical reports, transcriptions of

customer service calls or telephone conferences, and

electronic mail which contain information of great

potential value. In order to utilize the knowledge these

data contain, we need to be able to create common

glossaries of domain-specific names and terms. While we

were working on automatic glossary extraction, we noticed

that technical documents contain a lot of abbreviated

terms, which carry important knowledge about the

domains. We concluded that the correct recognition of

abbreviations and their definitions is very important for

understanding the documents and for extracting

information from them. An abbreviation is usually formed

by a simple method: taking zero or more letters from each

word of its definition. However, the tendency to make

unique, interesting abbreviations is growing. Two concepts,

distinguishing Global and Local abbreviations .Global

abbreviations are not defined within the document, similar to

common abbreviation. Local abbreviations appear in the

document alongside the long form, similar to dynamic

abbreviations.

II. OBJECTIVES
Our Objective is to create automatic dictionary of acronym-

definition pairs in given text. That is, given an input text, our

International Journal For Technological Research In Engineering

Volume 1, Issue 9, May-2014 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2013.All rights reserved. 809

algorithm will attempt to extract all explicit acronym-

definition pairs. People will find it helpful if we develop a

system that can automatically recognize acronyms and their

expansions from Text. This is because many organizations

have a large number of online documents which contain

many acronyms. One specific issue is the high rate at which

new abbreviations are introduced in texts. Existing databases,

ontologies, and dictionaries must be continually updated with

new abbreviations and their definitions. In an attempt to help

resolve the problem, introduced to automatically extract

abbreviations and their definitions.

III. METHOD

We decompose the Abbreviation-finding problem into three

steps:-

A. Identifying likely acronyms
The aim of this step is to identify all possible acronyms from

original textWe scan the text to find the Acronym candidates

.There are many approaches like All uppercase[5]

,parentheses matching[6] , Non parentheses matching [3].In

first Approach ,The input is pre-processed to disregard lines

of text that are all uppercase .In parentheses matching

Abbreviation approach ,most of the acronym-definition pairs

come inside parentheses and can correspond to two different

patterns: (i) definition (acronym) (ii) acronym (definition).

The algorithm extracts acronym-definition candidates which

correspond to one of these two patterns .In Non parentheses

matching; the algorithm seeks for acronym candidates that

follow the constraints and are not enclosed in parentheses

.There are some rules defined to identify likely Acronym.

Text Likely Acronyms

genuine acronym/expansion candidates

Fig. 1. Architecture of Acronym Identification System

B. Generating expansion candidates
In this step, we are to generating all expansion candidates for

acronyms identified .We notice that expansions always occur

in surrounding text where acronyms appear in. Based on this,

before generating expansion candidates, sentence broken and

tokenization should be conducted on text. Sentences are split

and tokens in sentences are segmented by white spaces.

Please note that punctuations such as ‘,’, ‘.’, ‘)’, ‘(’ and ‘!’etc.

are considered as single tokens. A given acronym splits the

sentence into two parts: the substring that precedes the

acronym (left context) and the substring that follows the

acronym (right context). All of the substrings of left and

right context are considered as candidates. Two parameters

are used for identify an expansion candidate: length and

offset. Maxlength is calculated as:-

Maxlength = min (length (acronym) +5, length (acronym) ×

2) We can also use lexical Analyzer in which Firstly remove

remove all non-alphabetic characters and break text into

chunks based on occurrence of (,) and. Characters. After

determine candidate acronym , it is compared with

preceeding chunk and following chunk ,looking for matching

definition .We can also uses rules to generating expansion

candidates from surrounding text.

C. Selecting genuine expansions

In the last step we select the genuine expansions for

acronyms from candidate set. we select the genuine

expansions Using longest comman substring(LCS)

algorithm[5],Using heuristic checker[6],Applying simple

algorithm[1],applying some rules. The longest common

subsequence (LCS) of any two strings X and Y is a common

subsequence with the maximum length among all common

subsequence.In heuristic checkers, once candidate acronyms

have been found they are passed through a number of

heuristics, any one of which may fail the acronym. The

heuristics are loosely based on the definition of acronyms.

The main idea of simple algorithm is starting from the end of

the short form and the long form, move right to left, trying

finding the shortest long form that matches the short form by

applying constraints. In rule based we define some rules to

select genuine expansions.

IV. ALGORITMS

A. Pattern Matching Algorithm

The program consists of three phases: initialization, input

filtering and the application of the acronym algorithm.

(a) Initialization Phase:

The input for the algorithm is composed of several lists of

words, with the text of the document as the final input

stream. These inputs are:

• A list of stop words - commonplace words that are

often insignificant parts of an acronym (e.g., “the",

“and", “of").

• A list of reject words |- words that are frequent in

the document, or in general, but are known not to be

acronyms (e.g., “TABLE", “FIGURE", Roman

Numerals.

• A database of acronyms and their accompanying

definitions.

• The text of the document or collection to be

searched.

(b) Input filtering Phase:

The input is pre-processed to disregard lines of text that are

all uppercase (e.g., titles and headings) [5]. Upon identifying

an acronym candidate, the reject word list is consulted before

subsequent processing. If the candidate does not appear in

the reject list, then an appropriate text window surrounding

RAM stands for Random

Access Memory and ROM

stands for Read Only

Memory

 ROM

Stands for Random

Access Memory

Stands, for, Read, Only,

Memory,

ROM ⇔ Read Only

Memory

International Journal For Technological Research In Engineering

Volume 1, Issue 9, May-2014 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2013.All rights reserved. 810

the acronym is searched for its definition. The text window is

divided into two sub windows, the pre-window and the post-

window. Each sub window’s length in words is set to twice

the number of characters in the acronym.

(c) Applying the algorithm Phase:

The algorithm identifies a common subsequence of the letters

of the acronym and the leader array to find a probable

denition. The longest common subsequence(LCS) [5] of any

two strings X and Y is a common sub-sequence with the

maximum length among all common Subsequence For

Example: if X = acbceac and Y = cebaca, then cba is a

common subsequence of X and Y of length 3.There are well

known and efficient algorithms that find only one LCS. To

fully explain AFP, we present an algorithm to generate all

possible LCS's. Now, for two strings X[1….m] and Y

[1….n], let c[i; j] be the length of an LCS of the sequences

X[1….i] and Y [1….j].c[i; j] can be obtained from the

following recursive formula.

 0 if i = 0 or j = 0

c[i; j] = c[i − 1; j − 1] + 1 if i; j > 0 and Xi = Yj

 max(c[i; j − 1];c[i − 1; j]) if i; j > 0 and Xi != Yj

Two matrix made:matrix c: The algorithm computes the

length of an LCS for strings X and Y and stores this value in

c[m; n].matrix b :The LCS construction method utilizes the

matrix b to show the path from which an LCS can be

constructed.A “ “ entry in b[i; j] asserts that X[i] = Y [j],

and c[i−1; j−1]+1 is the selected value.

B. Heuristic Algorithm

TLA (Three-Letter Acronyms) [6] was developed to provide

enhanced browsing facilities in a digital library. As with

AFP, candidate acronyms and their definitions are selected

from a stream of words. All non-alphabetic characters are

converted to spaces and any multiple spaces replaced with a

single space. Candidate acronyms are determined by

matching the initial letter of each word in the context of a

potential acronym against the appropriate letter in the

acronym. If the first letter does not match, the word is

skipped. Otherwise, the next letter of the same word is tested

against the next letter of the acronym, and if it matches the

algorithm continues to move along the word. A maximum of

six letters are used from each word, and a potential acronym

must be entirely upper-case. In order to determine which

candidate acronyms should be output, a machine learning

scheme is used. Four attributes [6] are calculated for each

candidate:

• the length of the acronym in characters (generally

between 2 and 6);

• the length of the acronym's definition in characters

(generally between 10 and 40);

• the length of the acronym's definition in words

(generally between 2 and 6);

• The number of stop words in the acronym's

definition.

These features clearly include redundancy the fourth is the

difference between the third and the first. The machine

learning approach is to generate a model using training data

in which acronyms have already been marked by hand. The

model determines what attributes, and what combinations of

attributes, are the important ones for making the decision.

Simple Algorithm with Adding Constraints
This consists of two phases: Identifying Short Form and

Long Form Candidates, Algorithm for Identifying Correct

Long Forms

(a)Identifying Short Form and Long Form Candidates:

For identifying likely Acronym two cases are considered [1]:

(i) Long form ‘(‘short form ‘)’

(ii) Short form ‘(‘long form ‘)’

For Identifying candidates for long form, we select

surrounding window in which no more than min (|A| + 5, |A|

* 2) words, where |A| is the number of characters in the short

form.

(b) Algorithm for Identifying Correct Long Forms:

The main idea is: starting from the end of the short form and

the long form, move right to left, trying find the shortest long

form that matches the short form. Every character in the

short form must match a character in the long form, and the

matched characters in the long form must be in the same

order as the characters in the short form .One exception: the

match of the character at the beginning of the short form

must match a character in the initial position of the word in

the long form.

Example:-

To illustrate the algorithm [1], consider the following pair

<HSF, Heat shock transcription factor>. The algorithm

starts by setting sIndex to point to the end of the short form

(HSF), and lIndex to point to the end of the long form

(factor). It then decrements lIndex until a match is found

(factor). sIndex is decremented by one (HSF). lIndex is

decremented until a match is found (transcription). sIndex is

decremented again (HSF). Since sIndex now points to the

beginning of the short form, the next match should be found

at a beginning of a word in the long form. Therefore, lIndex

is decremented until a valid match is found (Heat). Note that

another match was skipped (shock) because it was not in the

beginning of a word. Also note that although the algorithm

did not match the second character correctly (transcription

instead of shock) it still found the right long form.

C. Rule Based Algorithm

This consists of two phases two Phases: Finding Acronym-

Definition Candidates, Matching Acronyms with Definitions

(a)Finding Acronym-Definition Candidates:

A valid Acronym Candidate is found if the string satisfies the

conditions [3] (i) and (ii) and either (iii) or (iv): (i) The string

contains at least two characters. (ii) The string is not in the

list of rejected words. (iii) The string contains at least one

International Journal For Technological Research In Engineering

Volume 1, Issue 9, May-2014 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2013.All rights reserved. 811

capital letter. (iv) The strings’ first or last character is lower

case letter or numeric. The algorithm searches for a definition

candidate that satisfies the following conditions (i) At least

one letter of the words in the string matches the letter in the

acronym. (ii) The string doesn’t contain a colon, semi-colon,

question mark or exclamation mark. (iii) The maximum

length of the string is min (|A|+5,|A|*2), where |A| is the

acronym length. (iv)The string doesn’t contain only upper

case letters.

(b)Matching Acronyms with Definition:

The next step is to choose the correct substring of the

definition candidate for the acronym candidate. This is done

by reducing the definition candidate string as follows: the

algorithm searches for identical characters between the

acronym and the definition starting from the end of both

strings and succeeds in finding a correct substring for the

acronym candidateIf it satisfies the following conditions[3]:

(i) at least one character in the acronym string matches with a

character in the substring of the definition (ii) the first

character in the acronym string matches the first character of

the leftmost word in the definition substring, ignoring

upper/lower case letters.

V. SIGNIFICANCE OF WORK

• Useful tool for reader.

• Used to build new tools based on gathered acronym

data in digital libraries.

• An automatic method to define abbreviations would

help researchers by providing a self-updating

abbreviation dictionary and also facilitate computer

analysis of text.

• Used for hypertext browsing system.

• Used to enhance text or information retrieval.

• Help existing tools work more smoothly.

• Annotation and decoration of text presented to user

in digital libraries.

• Acronym detection improves the quality of spell

checker.

• Used in Post Processing System (PPS).

VI. PERFORMANCE AND COMPARISON

In different approaches performance measured using standard

measures Recall and Precision. These different systems

tested on collection of documents. The training and test sets,

while mutually exclusive, involved only a fraction of the

documents in the collection. To select these sets, the full

collection was automatically analysed and sequenced

according to the approximate ratio of acronyms to document

length.

APPROACH RECALL PRECISION

Pattern Matching

Algorithm

93%

 98%

Heuristic

Algorithm

91%

 68%

simple algorithm

with adding

constraints

82%

 96%

 Rule-based

method

72.5%

 93%

There are five main differences between Systems made by

using technique Using Pattern Matching Algorithm and

Using Heuristic Algorithm-
 First algorithm only considers the first letter of each

word when searching for acronyms. Second

algorithm considers the first three letters in each

word. This enables system to match acronyms such

as AmVets.

 First algorithm uses probabilistic techniques to

determine matches. A probability is computed that a

given definition matches a candidate acronym and if

this probability is higher than a certain threshold,

then it is accepted. Second algorithm uses a set of

heuristics each of which can reject any candidate

acronym in a Boolean fashion.

 First algorithm candidate acronyms are all upper

case; upper case sentences are ignored. Second

algorithm is independent of case (but heuristics

have case information available to them).

 First algorithm parses words with embedded

punctuation as single words, whereas Second

algorithm parses them as separate words. This

allows matching of U.S. Geographic Service

(USGS), but may prevent matching of other

acronyms.

 First accepts some errors. This enables matches for

acronyms which second miss. For example DBMS

(Database Management System), which Second

misses because the “B” is the middle of the

“Database”.

The first three differences appear to indicate that system

made using Heuristic Algorithm is more general than system

made Using Pattern Matching Algorithm.The fifth difference

indicates the system made using Pattern Matching Algorithm

is more general than system made using Heuristic Algorithm.

System made using Pattern Matching Algorithm reports

precision and recalls rates as high as 98%, this is far higher

that system made using Heuristic Algorithm has so far

achieved.

VII. CONCLUSION AND FUTURE WORK

System made using Pattern Matching Algorithm reports 98%

precision and 93% recall rates, this is far higher than other

approaches have so far achieved. Because most of algorithms

find only one LCS (Longest Common Subsequence) but

System made using Pattern Matching Algorithm generates

all possible LCS’s. For future work some adjustments like

special acronym characters or acronym length could be

provided as options to System made using Pattern Matching

International Journal For Technological Research In Engineering

Volume 1, Issue 9, May-2014 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2013.All rights reserved. 812

Algorithm so the program could be tailored to a document's

or collection's content .Future work can be to generate system

that will find Acronym-Definitions pairs from text that is in

other languages like piunjabi, hindi etc.

VIII. ACKNOWLEDGMENT

First and foremost, I would like to thank God almighty for

life itself. All that I have is due to His grace and I give all

glory to him. Even though I have let him down many times in

life, he has always carried me through. With deep sense of

gratitude I express my sincere thanks to my esteemed and

worthy supervisor Er. Jagroop Kaur, Assistant professor,

Department of Computer Engineering, Punjabi University,

Patiala for her valuable guidance in carrying out this work

under her effective supervision, encouragement, enlightment

and cooperation. I shall be failing in my duties, if I do not

express my deep sense of gratitude towards Dr. Lakh winder

Kaur, Professor and Head of, Department of Computer

Engineering, Punjabi University, Patiala for providing

necessary facilities in the department to carry out this work.

REFERENCES
[1] Ariel S. Schwartz and Marti A. Hearst. 2003. “A simple

algorithm for identifying abbreviation definitions in

biomedical texts”. Proc. of the Pacific Symposium on

Biocomputing. University of California, Berkeley.

[2] Dana Dannells,”Automatic Acronym Recognition”

[3] David Nadeau and Peter Turney. 2005.” A Supervised

Learning Approach to Acronym Identification”.

Information Technology National Research Council,

Ottawa, Ontario, Canada

[4] J.T. Chang, H Schütze, and R.B. Altman, “Creating an

Online Dictionary of Abbreviations from MEDLINE”

JAMIA, to appear.

[5] Kazen Taghva and Jeff Gilbreth. 1999. Technical

Report. “Recognizing Acronyms and their Definitions”.

University of Nevada, Las Vegas.

[6] Stuart Yeates. 1999.” Automatic extraction of acronyms

from text”. Proc. of the Third New Zealand Computer

Science Research Students’ Conference. University of

Waikato, New Zealand

