 REVIEW ON DDOS ATTACKS AND VARIOUS DETECTION MECHANISMS

Lovepreet Kaur¹ (M. Tech), Abhinav Bhandari² (Asst. Prof)
Department of Computer Engineering
Punjabi University, Patiala
Punjab, India.

Abstract: DDos attack is a coordinated attack on massive scale and it is a major threat in current computer networks. It is not easy to detect the attack. The seriousness of the DDoS problem and the increased frequency of DDoS attacks have led to the advent of numerous DDoS defense mechanisms. Detection mechanism is the first step to avoid the DDoS attack. Some of these mechanisms address a specific kind of DDoS attack such as attacks on Web servers or authentication servers. The defense system taxonomy is illustrated using only the currently known approaches. The goal of this paper is to impose the comprehensive survey of DDoS attacks, architecture of DDoS, detection mechanism of DDoS attack, detection classification, various detection approaches of DDoS and issues and challenges have been presented.

Keywords: DDoS, chi-square, Intrusion Detection System, and Destination port no.

I. INTRODUCTION

With the rapid development of the internet it becomes more complicated and there are so many areas which are not completely secure [1]. The threat of DDoS attacks is the major issue of security in the internet [1]. The distributed denial of service is the critical problem which is not solved yet. There is no complete solution existing of the DDoS attacks. The DOS means the attacker launches the large trick to victim and make it so busy to respond the traffic and it rejects the requests of the legitimate user also. When many attackers launch this kind of attack then it is called distributed denial of service. [2]. The first large scale DDOS attack took place on February 7, 2000 on Yahoo! And the internet portal was inaccessible for three hours. DDoS attack network follow two types of architectures: the internet relay chat and the agent handler architecture [3]. The agent handler architecture for DDOS attacks is comprised of clients, handlers and agents. The attacker communicates with the rest of the DDoS attack system at the client system. In the IRC based used channels to connect the client to the agents. IRC ports are used for sending commands to the agent. A recent attacking tool based on the IRC IS Low Orbit Ion cannon (LOIC) [4]. It includes three primary attacks for UDP, TCP, and HTTP. If the size of the compromised hosts is bigger than the attack is more powerful [6]. Along with the evolution of DDoS attack tools there are many detection mechanisms are also launched. Detection approaches include statistical, soft-computing, clustering, knowledge based and classifiers [9]. In the section 2 architecture of the DDoS attacks are explained. In section 3 the different techniques are preset which are used to detect the DDoS attacks and in section 4 and 5 datasets and issues and challenges are explained respectively.

II. DDoS ATTACK ARCHITECTURE

As stated in [3], A DDoS attack can be defined as an attack which uses a large no. of computers to launch a coordinated dos attack against a single machine or multiple victim machines. A DDoS attack is composed of several elements like attackers, victim, zombies and reflectors. The DDoS attacks of two types are direct DDoS attacks and indirect DDoS attacks. Generally, DDOS attacks can also be grouped in three types: service overloading, message flooding and clogging. Service overloading occurs when floods of request are made to a server process. Message flooding occurs when a user slows down a system on the network; it prevents the system from processing its normal workload. Clogging is the type of attack that rejects the three way handshaking in the TCP. It leads to exhaustion of the system resources [6]. DDoS attacks mainly take advantage of the architecture of the Internet and this is what makes them powerful. While designing the Internet, the prime concern was to provide for functionality, not security. [6] Internet security is highly interdependent. No matter how secure a victim’s system may be, whether or not this system will be a DDoS victim depends on the rest of the global Internet [15, 16]. Internet resources are limited. Every Internet host has limited resources that sooner or later can be exhausted by a sufficiently large number of users.

Fig. 1: Direct DDoS Attack [4]
Many against a few: If the resources of the attackers are greater than the resources of the victims, the success of the attack is always definite.

Upon attack detection, steps can be taken to characterize the packets belonging to the attack stream and provide this characterization to the response mechanism. We classify reactive mechanisms based on the attack detection strategy into mechanisms that deploy pattern detection, anomaly detection, hybrid detection, and third-party detection.[18]

A. Mechanism with Pattern Attack Detection
Mechanisms that deploy pattern detection store the signatures of known attacks in a database. Each communication is monitored and compared with database entries to discover occurrences of DDoS attacks. Occasionally, the database is updated with new attack signatures. The obvious drawback of this detection mechanism is that it can only detect known attacks, and it is usually helpless against new attacks or even slight variations of old attacks that cannot be matched to the stored signature. On the other hand, known attacks are easily and reliably detected, and no false positives are encountered. [18]

B. Mechanism with Anomaly Detection
Mechanisms that deploy anomaly detection have a model of normal system behavior, such as a model of normal traffic dynamics or expected system performance. The current state of the system is periodically compared with the models to detect anomalies. The advantage of anomaly detection over pattern detection is that unknown attacks can be discovered.

C. Threshold setting
Anomalies are detected when the current system state differs from the model by a certain threshold. The setting of a low threshold leads to many false positives, while a high threshold reduces the sensitivity of the detection mechanism. [18]

D. Model update
Systems and communication patterns evolve with time, and models need to be updated to reflect this change. Anomaly based systems usually perform automatic model update using statistics gathered at a time when no attack was detected. This approach makes the detection mechanism vulnerable to increasing rate attacks that can mistrain models and delay or even avoid attack detection. [18]

E. Mechanism with Hybrid Attack Detection
Mechanisms that deploy hybrid detection combine the pattern-based and anomaly-based detection, using data about attacks discovered through an anomaly detection mechanism to devise new attack signatures and update the database. Many intrusion detection systems use hybrid detection. If these systems are fully automated, properly extracting a signature from a detected attack can be challenging. The system must be careful not to permit attackers to fool it into detecting normal behavior as an attack signature, or the system itself becomes a denial-of-

Fig. 2: Indirect DDoS Attack [4]

III. OVERVIEW OF DDoS ATTACK DETECTION
The seriousness of the DDoS problem and the increased frequency of DDoS attacks have led to the advent of numerous DDoS defense mechanisms. Some of these mechanisms address a specific kind of DDoS attack such as attacks on Web servers or authentication servers. Other approaches attempt to solve the entire generic DDoS problem. Most of the proposed approaches require certain features to achieve their peak performance, and will perform quite differently if deployed in an environment where these requirements are not met. As is frequently pointed out, there is no “silver bullet” against DDoS attacks. Therefore we need to understand not only each existing DDoS defense approach, but also how those approaches might be combined together to effectively and completely solve the problem. The classification is based on heuristics or rules, rather than patterns or signatures, and attempts to detect any type of misuse that falls out of normal system operation. This is as opposed to signature based systems which can only detect attacks for which a signature has previously been created. In order to determine what attack traffic is, the system must be taught to recognize normal system activity. This can be accomplished in several ways, most often with artificial intelligence type techniques and second is signature based works as by reading the files of computer and cross referencing their contents with the ‘code signatures, belonging to the known viruses. A library code signature is updated and refreshed constantly by the antivirus software vendor. If a virtual signature is detected the software acts to protect the user system from damage [18].

IV. CLASSIFICATION OF DETECTION
Reactive mechanisms strive to alleviate the impact of an attack on the victim. In order to attain this goal they need to detect the attack and respond to it. The goal of attack detection is to detect every attempted DDoS attack as early as possible and to have a low degree of false positives.
service tool [18].

F. Mechanism with Third Party Attack
Mechanisms that deploy third-party detection do not handle the detection process themselves, but rely on an external message that signals the occurrence of the attack and provides attack characterization. Examples of mechanisms that use third-party detection are easily found among traceback mechanisms. The goal of the attack response is to relieve the impact of the attack on the victim, while imposing minimal collateral damage to legitimate clients of the victim.[18]

V. RELATED WORK
A. Statistical approach to detect the DDoS attacks
The statistical approach is used to identify the DDoS attacks by computing entropy and frequency – sorted distributions of selected packet attributes. The detection accuracy and performance are analyzed using live traffic traces from a variety of network environments ranging from point in the core of the internet to those inside an edge network [5]. Statistical properties of normal and attack patterns can be exploited for detection of DDoS attacks. Generally a statistical model for normal traffic is fitted and then a statistical inference test is applied. [4]

B. Information Entropy
Entropy is a concept identified by Shanon in 1948. Entropy is a quantity, a measure of the uncertainty of a random variable [7]. Let an information source have an independent symbol each with probability of choices pᵢ [5]. Then, the entropy H is defined as,

\[H = \sum_{i=1}^{N} p_i \log_2 p_i \] (1)

Hence, entropy can be computed on a sample of consecutive packets [5]. As stated in [7] the two types of entropy based computation approaches are used: Compression entropy based using a data compression and modified entropy estimator: called fast entropy. The function of the basic properties of entropy is defined as a concave function of the distribution. The entropy value equals 0 when p = 0 or 1. Similarly, the entropy is maximum when p=1/2. This property easily can be used in network traffic monitoring. If network traffic changes from normal to abnormal status such as when the DDoS attacker sends a bulk of packets with the same port no., the entropy of this port number will be decreased. By contrast, under normal conditions, the entropy of the port number will be increased. This phenomenon can be applied to various network information such as source IP address, destination IP address, source port, total number of packets, and even in the data clustering schemes. It is observed through experimentation that while a network is not under attack, the entropy values for various header fields each fall in a narrow range. While the network is under attack with current attack tools, these entropy values exceed these ranges in a detectable manner. The algorithm is used to compute the entropy based on the computation of packets entropy of a source will be calculated through a sliding window of fixed width, W. The probability ability value in the algorithm is actually the frequency of occurrence of each unique symbol is divided by the total number of symbols in the sample. The following steps are used to calculate the value of entropy:

1. Compute the entropy of the first W packets with reference to the specific header parameters.
2. Isolate the term in the summation corresponding to the first probability of symbol in the window and also the value for the corresponding probability.
3. Slide the window so the first term and the next w-1 consecutive terms are contained in the window.
4. Isolate the term in the summation corresponding to the probability of the symbol acquired from shifting the window and subtracts off the terms isolated in steps 2nd and 4th from the value computed in the first step and after that recomputed the affected probabilities for the current window of data. Using the values computed in the last step and add the two missing terms in the from the entropy summation back in and compare this new entropy value to the previous entropy computations. After that repeat all the steps to determine entropy values. The Window size, W is a tunable parameter that controls how much smoothing of short term fluctuations the detector will do. Increasing it will reduce the rate of false positive resulting from brief and presumably insignificant anomalies and we should be kept small enough the attacks are detected quickly [1].

C. Chi-Square Method
Person’s chi - square test is used to verify the difference between the measurement and expected distribution. For a sample of N packets, let B the no. of available bins. Define Nᵢ as the no. of packets whose value falls in ith and nᵢ as the expected no. of packets and it can be defined as:

\[\chi^2 = \sum_{i=1}^{B} \frac{(N_i - n_i)^2}{n_i} \] (2)

However, this can be achieved through “binning” that is a combining a set or range of possible values and treating them as one [5]. When the Nᵢ and nᵢ values are large and the N measurements are independent and drawn from the expected distributions. This value follows the well-known chi – square distribution with B-1 degrees of freedom [5]. These assumptions do not typically hold for the packet field values even under normal conditions. Hence, comparison with the chi square distribution is of limited utility [5]. The robustness and the scalability of chi square mechanism over Canberra method for real time intrusion detection in large network [9]. They tested the method with different dataset containing both normal and intrusive activities and proved the good detection ratio. In high speed networks, the detection based on the packets can be expensive and while studying the chi – square to remove the expensiveness the use of chi – square techniques over flow data for network monitoring and anomaly detection are suggested. [10]

D. Knowledge based method
In this section , an expert system approach is proposed for the detection of DDoS attack. The defending system based on
E. Knowledge construction phase
The prior knowledge such as detecting rules, state transition rules is explained in the knowledge construction phase [1].

F. Detecting phase
The system state is transformed from normal state to attacked state to attacked state by the event of attack.

G. Filtering phase
When the system state switched to attacked state, then the traffic will be selected for dropping adaptively in filtering phase [1]. In knowledge-based approaches, network events are checked against predefined rules or patterns of attack. In these approaches, general representations of known attacks are formulated to identify actual occurrences of attacks. Examples of knowledge-based approaches include expert systems, signature analysis, self-organizing maps, and state transition analysis. As in stated in [17], heuristic along with a data structure called MULTOPS (Multi-Level Tree for Online Packet Statistics), that monitor certain traffic characteristics which can be used by network devices such as routers to detect and eliminate DDoS attacks. MULTOPS is a tree of nodes that contains packet rate statistics for subnet prefixes at different aggregation levels. Expansion and contraction of the tree occurs within a pre-specified memory size. A network device using MULTOPS detects ongoing bandwidth attacks by the presence of a significant and disproportional difference between packet rates going to and from the victim or the attacker. Depending on their setup and their location on the network, MULTOPS equipped routers or network monitors fail to detect a bandwidth attack that is mounted by attackers that randomizes IP source addresses on malicious packets. MULTOPS fails to detect attacks that deploy a large number of proportional flows to cripple a victim.

H. Other Data Mining and Machine learning methods
An effective defensive system to protect network servers, network routers, and client hosts from becoming handlers, zombies, and victims of DDoS flood attacks is presented in [11]. The Net Shield system protects any IP-based public network on the Internet. It uses preventive and deterrent controls to remove system vulnerabilities on target machines. Adaptation techniques are used to launch protocol anomaly detection and provide corrective intrusion responses. The Net Shield system enforces dynamic security policies. Net Shield is especially tailored for protecting network resources against DDoS flood attacks. Chen et al. [12] present a comprehensive framework for DDoS attack detection known as DDoS container. It uses a network based detection method to overcome complex and evasive types of DDoS attacks. It works in inline mode to inspect and manipulate ongoing traffic in real time. By continuous monitoring of both DDoS attacks and legitimate applications, DDoS container covers stateful inspection on data streams and correlates events among different sessions. It proactively terminates the session when it detects an attack. Lee et al. [13] propose a method for proactive detection of DDoS attacks by exploiting an architecture consisting of a selection of handlers and agents that communicate compromise and attack. The method performs cluster analysis. The authors experiment with the DARPA 2000 Intrusion Detection Scenario specific Dataset to evaluate the method. There results show that each phase of the attack scenarios partitioned well and can detect precursors of a DDoS attack as well as the attack itself. There results show that each phase of the attack scenario is partitioned well and can detect precursors of a DDoS attack as well as the attack itself.

<table>
<thead>
<tr>
<th>Technique Used</th>
<th>Objective</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistical Technique</td>
<td>To identify DDoS attacks</td>
<td>In this statistical method is used to identify ddos attack by using entropy and frequency sorted distributions</td>
</tr>
<tr>
<td>Laura Feinstei, Dan Schnackenberg, Ravinda Balupari, IIDarrell Kindred[5]</td>
<td>Detection of DDoS attack</td>
<td>It is an entropy based intrusion detection approach and it uses the computation time for calculating information entropy.</td>
</tr>
<tr>
<td>Information Entropy theory Giseop No, Ilkyeun Ra[7]</td>
<td>To defend DDoS attacks</td>
<td>Chi square method is used to analyses the amount of incoming packets basedon destination port no.</td>
</tr>
<tr>
<td>Chi Square Method is Used under Statistical Approach Shunsuke Oshima, Arata Hirakawa, Taku Nakashima, Toshinori Sueyoshi [8]</td>
<td>Secure Transport</td>
<td>It suggests a</td>
</tr>
</tbody>
</table>
In this paper, the overview of DDoS attacks and detection mechanism of DDoS attacks has been presented. The challenges and issues are also discussed. It is very difficult to provide security to internet from DDoS attacks because the implementation and designing of the detection system is very difficult but there are various techniques like entropy based technique, chi-square method, IP flow characteristics by using chi square method by using destination port no and secure transport protocols are available to detect the DDoS attacks.

VIII. ACKNOWLEDGEMENT
The author is grateful to Mr. Abhinav Bhandari, Assistant Professor, Department of Computer Engineering, Punjabi University, Patiala for their support and guidance.

REFERENCES

[18] A Taxonomy of DDoS attacks and DDoS Attack defense Mechanism Jelena Mirkovic, Janice Martin and Peter Reiher Computer Science Department University of California, Los Angeles Technical report #020018