
International Journal For Technological Research In Engineering

Volume 1, Issue 10, June-2014 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2014.All rights reserved. 1128

EFFICIENT VLSI ARCHITECTURE USING DIT-FFT RADIX-2 AND

SPLIT RADIX FFT ALGORITHM

Rashmi M J1, G S Biradar2, Meenakshi Patil3
1VLSI Design & Embedded Systems, Department of PG Studies, VTU RC, Gulbarga, India.

 2,3Department of Electronics & Communication Engg., PDA College Of Engineering, Gulbarga, India.

Abstract: FFT has wide use in communication for

processing the data being exchanged. Hence it is important

to develop high-performance FFT architecture to meet the

requirements of real time and low cost in many different

systems. Efficient VLSI architecture based on Field

Programmable Gate Array (FPGA) for Wireless Local Area

Networks (WLAN) is presented in this paper. This paper

concentrates on the development of the Fast Fourier

Transform (FFT), based on Decimation-In-Time (DIT)

domain, Radix-2 FFT algorithm and Split Radix FFT

Algorithm and finally architectures by two different

algorithms are compared for speed and device utilization.

This paper concerns about design of DIT-FFT for different

sized inputs using Verilog HDL as a design entity, and their

Synthesis by Xilinx Synthesis Tool on Spartan kit. Among

the different proposed algorithms, split-radix FFT has

shown considerable improvement in terms of reducing

hardware complexity of the architecture compared to radix-

2 and radix-4 FFT algorithms. The synthesis results show

that the computation for calculating the 32-point Fast

Fourier transform is efficient in terms of speed.

Keywords: Butterfly, DFT, Split Radix, FFT, VLSI.

I. INTRODUCTION

Fast Fourier Transform (FFT) has become ubiquitous in

many engineering applications [1]. High-speed FFT

architectures are necessary to implement several

communication systems, signal processing systems, etc. [2] –

[4]. The FFT blocks are also used in mechanical engineering

and civil engineering applications [5] – [6]. FFT has been

considered as the most efficient way of implementing the

discrete Fourier transform (DFT) and it was first

implemented in 1965 [7]. The efficiency of the FFT

algorithm lies in its reduced number of arithmetic operations.

DFT has the order O (N * N) of arithmetic operations

whereas FFT has the order of O (N log N) arithmetic

operations. If the architecture is designed for complex inputs,

the number of arithmetic operations becomes approximately

double when compared to those which are designed for real

inputs. One of the disadvantages of conventional FFT

architectures is the presence of multiplier blocks, which has

increased hardware, increased power consumption and

reduced operating frequency. The basic FFT design is based

on radix-2 butterfly block, which was proposed by Cooley-

Tukey [7]. Recent advances in the algorithm include FFT

architectures based on higher and split-radix such as radix-4,

radix-8, radix-2k, etc. [8] – [12]. Split-radix FFT is one of the

FFT algorithms that use combination of different radix FFT.

Split-radix FFT algorithm combines simplicity of radix-2

FFT with less computational complexity radix-4 FFT. The

advantage of split-radix FFT is that it has considerably fewer

number of arithmetic computations compared to that of

radix-4 and radix-2 FFT. Split-radix also has several other

advantages such as regular structure, no reordering of

internal signals except for outputs, etc. Since it mostly uses

radix-2 block in its architecture, it is possible to implement

split-radix FFT for inputs of kind 2k, k being an integer. In

the following sections, first section presents a Radix-2

Cooley-Tukey FFT Algorithm. Then, next section presents

efficient VLSI architectures of DIT-FFT using split-radix

algorithm. Next, proposed architectures with the existing

ones are compared. Final section concludes the paper with

mentioning possible further improvements.

II. VLSI ARCHITECTURES USING DIT-FFT RADIX-2

ALGORITHM

Butterfly is a portion of the computation that combines the

results of smaller discrete Fourier transforms (DFTs) into a

larger DFT, or vice versa (breaking a larger DFT up into sub-

transforms). The name "butterfly" comes from the shape of

the data-flow diagram in the radix-2 case, as described

below.[A] The same structure can also be found in the

Viterbi algorithm, used for finding the most likely sequence

of hidden states. Most commonly, the term "butterfly"

appears in the context of the Cooley–Tukey FFT algorithm,

which recursively breaks down a DFT of composite size

n = rm into r smaller transforms of size m where r is the

"radix" of the transform. These smaller DFTs are then

combined via size-r butterflies, which themselves are DFTs

of size r (performed m times on corresponding outputs of the

sub-transforms) pre-multiplied by roots of unity (known as

twiddle factors). This is the "decimation in time (DIT)".

A. Block diagram of Radix-2 FFT Algorithm

In the case of the radix-2 Cooley–Tukey algorithm, butterfly

is basic block which is shown in Fig. 1.

Fig. 1: Radix-2 Butterfly FFT

http://en.wikipedia.org/wiki/Discrete_Fourier_transform
http://en.wikipedia.org/wiki/Butterfly_diagram#cite_note-Oppenheim89-1
http://en.wikipedia.org/wiki/Viterbi_algorithm
http://en.wikipedia.org/wiki/Cooley%E2%80%93Tukey_FFT_algorithm
http://en.wikipedia.org/wiki/Recursion
http://en.wikipedia.org/wiki/Composite_number
http://en.wikipedia.org/wiki/Root_of_unity
http://en.wikipedia.org/wiki/Twiddle_factor

International Journal For Technological Research In Engineering

Volume 1, Issue 10, June-2014 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2014.All rights reserved. 1129

Butterfly is simply a DFT of size-2 that takes two inputs

(x0, x1) (corresponding outputs of the two sub-transforms)

and gives two outputs (y0, y1) by the formula (not including

twiddle factors):

10

100

1 xxy

xxy




 (1)

If one draws the data-flow diagram for this pair of operations,

the (x0, x1) to (y0, y1) lines cross and resemble the wings of

a butterfly, hence the name (see also the illustration at right).

More specifically, a decimation-in-time FFT algorithm on

n = 2 p inputs with respect to a primitive
thn root of unity

k

nw
relies on O (n log n) butterflies of the form:

k

n

k

n

wxxy

wxxy

101

100




 (2)

where k is an integer depending on the part of the transform

being computed.

In general N-point DFT of a sequence x(n) is given by

1,.......,1,0

)()(
1

0








Nk

WnxkX
N

n

nk

N
 (3)

The radix-2 algorithms are the simplest FFT algorithms. The

decimation-in-time (DIT) radix-2 FFT recursively partitions

a DFT into two half-length DFTs [13] of the even-indexed

and odd-indexed time samples. The outputs of these shorter

FFTs are reused to compute many outputs, thus greatly

reducing the total computational cost. The radix-2

decimation-in-time and decimation-in-frequency fast Fourier

transforms (FFTs) are the simplest FFT algorithms. Like all

FFTs, they gain their speed by reusing the results of smaller,

intermediate computations to compute multiple DFT

frequency outputs.

1) 4-point Radix-2 FFT: 4-point transform can be reduced to

two 2-point transforms: one for even elements, one for odd

elements. The odd one will be multiplied by W4k.

Diagrammatically; this can be represented as two levels of

butterflies. Notice that using the identity WN/2n = WN2n, we

can always express all the multipliers as powers of the same

WN (in this case we choose N=4).

Fig. 2: 4-point Radix-2 FFT

2) 8-point Radix-2 FFT: An 8 input butterfly diagram has 12

2-input butterflies and thus 12*2 = 24 multiplies.

N Log N = 8 Log (8) = 24. A straight DFT has N*N

multiplies, or 8*8 = 64 multiplies. That's a pretty good

savings for a small sample. The savings are over 100 times

for N = 1024 and this increases as the number of samples

increases.

Fig. 3: 8-point Radix-2 FFT

3)16-point Radix-2 FFT: 16 input butterfly diagram has 32

2-input butterflies and thus 32*2 = 64 multiplies. N Log N =

16 Log (16) = 64. A straight DFT has N*N multiplies, or

16*16 = 256 multiplies.

Fig. 4: 16-point Radix-2 FFT

http://en.wikipedia.org/wiki/Twiddle_factor
http://en.wikipedia.org/wiki/Butterfly

International Journal For Technological Research In Engineering

Volume 1, Issue 10, June-2014 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2014.All rights reserved. 1130

4) 32-point Radix-2 FFT: 32 input butterfly diagram has 64

2-input butterflies and thus 64*2 = 128 multiplies. N Log N =

32 Log (32) = 128. A straight DFT has N*N multiplies, or

32*32 = 1024 multiplies.

Fig. 5: 32-point Radix-2 FFT

III. VLSI ARCHITECTURES USING SPLIT-RADIX FFT

ALGORITHM

The split-radix FFT is a fast Fourier transform (SRFFT)

algorithm for computing the discrete Fourier transform

(DFT). split radix is a variant of the Cooley-Tukey FFT

algorithm that uses a blend of radices 2 and 4: it recursively

expresses a DFT of length N in terms of one smaller DFT of

length N/2 and two smaller DFTs of length N/4. The split-

radix algorithm can only be applied when N is a multiple of

4, but since it breaks a DFT into smaller DFTs it can be

combined with any other FFT algorithm as desired. While

calculating FFT using Radix-2 method, it can be concluded

that the even-numbered points and the odd-numbered points

are computed independently. This leads to the possibility of

using different computational methods for different

independent parts of the algorithm which will reduce

computational complexity. Split-radix algorithm uses the

above method by combining the simplicity of radix-2

algorithm and lesser computational complexity of radix-4

algorithm, achieving the lowest number of arithmetic

operation count to compute DFT of power-of-two sizes N.

Split-radix method recursively expresses DFT of length N in

terms of one smaller DFT of length N/2 and two smaller

DFTs of length N/4. Split-radix is only applicable when N is

a multiple of 4, but we can combine this with other FFT

algorithms. The algorithm for the fast and less complexity

computation of the DFT by Split-radix (SRFFT) was

developed by Duhamel and Hollmann [16], [17] for data

sequences having a length N that is an integer power of 2.

According to them, the even-numbered samples of the N-

point DFT can be calculated by

1
2

,......1,0

)]
2

()([)2(

1
2

0

2/








N
k

W
N

nxnxkX

N

n

nk

N (4)

Those even-numbered DFT points can be calculated without

any additional multiplications. So, radix-2 algorithm is

sufficient for the above calculation. The odd-numbered

samples X(2k+1) requires an additional multiplication of

twiddle factor
n

NW
.

To implement this, radix-4 algorithm is used for its lesser

computational complexity. Using radix-4 algorithm for the

odd –numbered samples of the N-point DFT, the following

N/4-point DFTs are obtained.








1
4

0

)}
2

()([{)14(

N

n

N
nxnxkX

nk

N

n

NWW
N

nx
N

nxj 4/)}]
4

3
()

2
({ 

1
4

,.....,1,0 
N

k
 (5)

And








1
4

0

)}
2

()([{)34(

N

n

N
nxnxkX

nk

N

n

N WW
N

nx
N

nxj 4/

3)}]
4

3
()

2
({ 

1
4

,.....,1,0 
N

k
 (6)

Hence, the N-point DFT now has been decomposed into one

N/2-point DFT without phase factor and another two N/4-

point DFTs with phase factor. Fig. 6 shows the split-radix

butterfly unit and Fig. 7 shows its equivalent.

Fig. 6: Split-radix butterfly unit

http://en.wikipedia.org/wiki/Fast_Fourier_transform
http://en.wikipedia.org/wiki/Discrete_Fourier_transform
http://en.wikipedia.org/wiki/Cooley-Tukey_FFT_algorithm
http://en.wikipedia.org/wiki/Cooley-Tukey_FFT_algorithm
http://en.wikipedia.org/wiki/Recursion

International Journal For Technological Research In Engineering

Volume 1, Issue 10, June-2014 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2014.All rights reserved. 1131

Fig. 7: Equivalent representation of Split-radix butterfly unit

Fig. 8: Radix-2 butterfly used in SRFF architectures

A. 4-point SRFFT

The 4-point SRFFT uses one split radix butterfly unit and one

radix-2 butterfly for computation of final output.

Fig. 9: 4-point SRFFT

B. 8-point SRFFT

The 8-point SRFFT uses 3 split radix butterfly unit and 3

radix-2 butterfly unit for computation of final output.

Fig. 10: 8-point SRFFT

C. 16-point SRFFT

The 16-point SRFFT uses 9 split radix butterfly unit and 5

radix-2 butterfly for computation of final output.

Fig. 11:16-point SRFFT

D. 32-point SRFFT

The 32-point SRFFT uses 23 split radix butterfly unit and 11

radix-2 butterfly for computation of final output.

Fig. 12: 32-point SRFFT

International Journal For Technological Research In Engineering

Volume 1, Issue 10, June-2014 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2014.All rights reserved. 1132

IV. SOFTWARE SIMULATION RESULTS

FFT block of signal length 4 is simulated and synthesized

using the Xilinx Design Suite 12.1. The RTL block thus

obtained for the decimation in time domain radix -2 Fast

Fourier transform algorithm is shown

Fig. 13: RTL Schematic of 4-point Radix-2 FFT

Fig. 14: Simulation result of 4-point SRFFT

Fig. 15: Simulation result of 8-point SRFFT

Fig. 16: Simulation result of 16-point SRFFT

Fig. 17: Simulation result of 32-point SRFFT

International Journal For Technological Research In Engineering

Volume 1, Issue 10, June-2014 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2014.All rights reserved. 1133

TABLE I

Memory utilization and Minimum Delay of Radix-2 FFT

 Total

memory usage

Minimum Delay

4 point FFT 159000 kb 2.780 ns

8 point FFT 166488 kb 7.663 ns

16 point FFT 195800 kb 12.588 ns

32 point FFT 324568 kb 17.514 ns

TABLE II

Memory utilization and Minimum Delay of Split Radix FFT

 Total

memory usage

Minimum Delay

4 point FFT 159000 kb 2.107 ns

8 point FFT 165656 kb 7.000 ns

16 point FFT 189272 kb 8.444 ns

32 point FFT 266776 kb 13.362 ns

Table I and Table II shows the memory utilization and the

minimum delay of Radix-2 FFT nd Split Radix FFT for

different signal length respectively. From the tables it can be

observed that the there is almost same memory usage for the

both architectures when the signal length is very small.

However the memory usage is improved for Split Radix FFT

architectures by an amount of 6.5 megabytes as the signal

length is increased. And finally there is a great improvement

in the memory usage required by an amount of 58 megabytes

for Split Radix FFT compared to that of Radix-2 FFT for the

very high signal length. It can be clearly seen in the below

2D graph in Fig. 18.

Fig. 18: Device utilization with variable input signal length

It can also be observed from the tables that the minimum

delay of Split Radix is reduced compared to that of Radix-2

FFT architecture. Split Radix FFT architecture has minimum

delay which is almost 0.6 ns less than the minimum delay of

Radix-2 FFT when the signal length is very small. This can

be clearly observed in the below 2D graph in Fig. 19.

Fig. 19: Minimum delay with variable input signal length

Below Fig. 20 and Fig. 21 shows the same comparison

graphs in 3D view of the graph in Fig. 18 and Fig. 19.

Fig. 20: 3D view of Device utilization with input signal

length

International Journal For Technological Research In Engineering

Volume 1, Issue 10, June-2014 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2014.All rights reserved. 1134

Fig. 21: 3D view of Device utilization with input signal

length

V. CONCLUSIONS

This paper has reported two efficient VLSI architectures of

DIT-FFT. Both proposed architectures are designed for

complex inputs with a data width of 16 bits, maintained

constant all along. The simulation outputs of proposed

architectures have not shown much deviation from numerical

values. But, proposed architecture using Radix-2 algorithm

has high memory usage and also has huge number of

arithmetic operations which causes the delay to be maximum

as the signal length increases; this drawback has been

overcome in the later VLSI architecture using Split Radix

FFT Algorithm. Performance parameters of both

architectures shown in table and graph clearly show the

improvement of SRFFT VLSI architecture. The Delay of

SRFFT less than that of Radix-2 FFT as the signal length

increases.

 REFERENCES

[1] P. Duhamel and M. Vetterli, “Fast Fourier Transforms:

A Tutorial Review and A State of The Art,” IEEE Signal

Processing Society, vol. 4, no. 19, 1990, pp. 259 – 299.

[2] Y.-W. Lin, H.-Y. Liu, and C.-Y. Lee, “A 1-GS/s

FFT/IFFT processor for UWB applications,” IEEE

Journal of Solid-State Circuits, vol. 40, no. 8, Aug. 2005,

pp. 1726 – 1735

[3] S.-N. Tang, J.-W. Tsai, and T.-Y. Chang, “A 2.4-GS/s

FFT Processor for OFDM-Based WPAN Applications,”

IEEE Trans. Circuits Syst. II: Exp. Briefs, vol. 57, no. 6,

Jun. 2010, pp. 451 – 455.

[4] J ohn G. Proakis, Dimitris G. Manolakis, “Digital Signal

Processing: Principles, Algorithms, and Applications”,

Prentice- Hall, 1998.

[5] Z. Ismail, N. H. Ramli, Z. Ibrahim, T. A. Majid, G.

Sundaraj, and W. H. W. Badaruzzaman, “Design Wind

Speeds using Fast Fourier Transform: A Case Study,”

Computational Intelligence in Control, Idea Group

Publishing, 2012, ch. XVII.

[6] Robert Frey, “The FFT Analyzer in Mechanical

Engineering Education,” Sound and Vibration:

Instrumentation Reference Issue, Feb. 1999, pp. 1 – 3.

[7] James W. Cooley and John W. Tukey, “An Algorithm

for Machine Calculation of Complex Fourier Series,”

Mathematics of Computation, vol. 19, 1965, pp. 297 –

301.

[8] Mario Garrido, J. Grajal, M. A. Sánchez, and Oscar

Gustafsson, “Pipelined Radix-2k Feedforward FFT

Architectures,” IEEE Trans. VLSI Syst., vol. 21, no. 1,

Jan. 2013, pp. 23 – 32.

[9] Y. Chen, Y. Tsao, Y. Wei, C. Lin, and C. Lee, “An

indexed- scaling pipelined FFT processor for OFDM-

based WPAN applications,” IEEE Trans. Circuits Syst.

II: Exp. Briefs, vol. 55, no. 2, Feb. 2008, pp. 146–150.

[10] M. Shin and H. Lee, “A high-speed four-parallel radix-

24 FFT processor for UWB applications,” Proc. IEEE

Int. Symp. Circuits Syst. (ISCAS), 2008, pp. 960–963.

[11] F. Arguello and E. Zapata, “Constant geometry split-

radix algorithms,” Journal of VLSI Signal Processing,

1995.

[12] Steven G. Johnson and Matteo Frigo, “A Modified Split-

Radix FFT with Fewer Arithmetic Operations,” IEEE

Trans. Signal Processing, vol. 55, no. 1, Jan. 2007, pp.

111 – 119.

[13] Stanley A. White, “Applications of Distributed

Arithmetic to Digital Signal Processing: A Tutorial

Review,” IEEE ASSP Magazine, vol. 6, no. 3, Jul. 1989,

pp. 4 – 19.

