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Abstract: FFT has wide use in communication for 

processing the data being exchanged. Hence it is important 

to develop high-performance FFT architecture to meet the 

requirements of real time and low cost in many different 

systems. Efficient VLSI architecture based on Field 

Programmable Gate Array (FPGA) for Wireless Local Area 

Networks (WLAN) is presented in this paper. This paper 

concentrates on the development of the Fast Fourier 

Transform (FFT), based on Decimation-In-Time (DIT) 

domain, Radix-2 FFT algorithm and Split Radix FFT 

Algorithm and finally architectures by two different 

algorithms are compared for speed and device utilization. 

This paper concerns about design of DIT-FFT for different 

sized inputs using Verilog HDL as a design entity, and their 

Synthesis by Xilinx Synthesis Tool on Spartan kit. Among 

the different proposed algorithms, split-radix FFT has 

shown considerable improvement in terms of reducing 

hardware complexity of the architecture compared to radix-

2 and radix-4 FFT algorithms. The synthesis results show 

that the computation for calculating the 32-point Fast 

Fourier transform is efficient in terms of speed.  
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I. INTRODUCTION 

Fast Fourier Transform (FFT) has become ubiquitous in 

many engineering applications [1]. High-speed FFT 

architectures are necessary to implement several 

communication systems, signal processing systems, etc. [2] – 

[4]. The FFT blocks are also used in mechanical engineering 

and civil engineering applications [5] – [6]. FFT has been 

considered as the most efficient way of implementing the 

discrete Fourier transform (DFT) and it was first 

implemented in 1965 [7]. The efficiency of the FFT 

algorithm lies in its reduced number of arithmetic operations. 

DFT has the order O (N * N) of arithmetic operations 

whereas FFT has the order of O (N log N) arithmetic 

operations. If the architecture is designed for complex inputs, 

the number of arithmetic operations becomes approximately 

double when compared to those which are designed for real 

inputs. One of the disadvantages of conventional FFT 

architectures is the presence of multiplier blocks, which has 

increased hardware, increased power consumption and 

reduced operating frequency. The basic FFT design is based 

on radix-2 butterfly block, which was proposed by Cooley-

Tukey [7]. Recent advances in the algorithm include FFT 

architectures based on higher and split-radix such as radix-4, 

radix-8, radix-2k, etc. [8] – [12]. Split-radix FFT is one of the 

FFT algorithms that use combination of different radix FFT.  

 

Split-radix FFT algorithm combines simplicity of radix-2 

FFT with less computational complexity radix-4 FFT. The 

advantage of split-radix FFT is that it has considerably fewer 

number of arithmetic computations compared to that of 

radix-4 and radix-2 FFT. Split-radix also has several other 

advantages such as regular structure, no reordering of 

internal signals except for outputs, etc. Since it mostly uses 

radix-2 block in its architecture, it is possible to implement 

split-radix FFT for inputs of kind 2k, k being an integer. In 

the following sections, first section presents a Radix-2 

Cooley-Tukey FFT Algorithm. Then, next section presents 

efficient VLSI architectures of DIT-FFT using split-radix 

algorithm. Next, proposed architectures with the existing 

ones are compared. Final section concludes the paper with 

mentioning possible further improvements. 

 

II. VLSI ARCHITECTURES USING DIT-FFT RADIX-2 

ALGORITHM 

Butterfly is a portion of the computation that combines the 

results of smaller discrete Fourier transforms (DFTs) into a 

larger DFT, or vice versa (breaking a larger DFT up into sub-

transforms). The name "butterfly" comes from the shape of 

the data-flow diagram in the radix-2 case, as described 

below.[A] The same structure can also be found in the 

Viterbi algorithm, used for finding the most likely sequence 

of hidden states. Most commonly, the term "butterfly" 

appears in the context of the Cooley–Tukey FFT algorithm, 

which recursively breaks down a DFT of composite size 

n = rm into r smaller transforms of size m where r is the 

"radix" of the transform. These smaller DFTs are then 

combined via size-r butterflies, which themselves are DFTs 

of size r (performed m times on corresponding outputs of the 

sub-transforms) pre-multiplied by roots of unity (known as 

twiddle factors). This is the "decimation in time (DIT)". 

 

A. Block diagram of Radix-2 FFT Algorithm 

In the case of the radix-2 Cooley–Tukey algorithm, butterfly 

is basic block which is shown in Fig. 1. 

 
Fig. 1: Radix-2 Butterfly FFT 

http://en.wikipedia.org/wiki/Discrete_Fourier_transform
http://en.wikipedia.org/wiki/Butterfly_diagram#cite_note-Oppenheim89-1
http://en.wikipedia.org/wiki/Viterbi_algorithm
http://en.wikipedia.org/wiki/Cooley%E2%80%93Tukey_FFT_algorithm
http://en.wikipedia.org/wiki/Recursion
http://en.wikipedia.org/wiki/Composite_number
http://en.wikipedia.org/wiki/Root_of_unity
http://en.wikipedia.org/wiki/Twiddle_factor
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Butterfly is simply a DFT of size-2 that takes two inputs 

(x0, x1) (corresponding outputs of the two sub-transforms) 

and gives two outputs (y0, y1) by the formula (not including 

twiddle factors): 
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If one draws the data-flow diagram for this pair of operations, 

the (x0, x1) to (y0, y1) lines cross and resemble the wings of 

a butterfly, hence the name (see also the illustration at right). 

More specifically, a decimation-in-time FFT algorithm on 

n = 2 p inputs with respect to a primitive 
thn  root of unity 
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where k is an integer depending on the part of the transform 

being computed. 

In general N-point DFT of a sequence x(n) is given by 
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The radix-2 algorithms are the simplest FFT algorithms. The 

decimation-in-time (DIT) radix-2 FFT recursively partitions 

a DFT into two half-length DFTs [13] of the even-indexed 

and odd-indexed time samples. The outputs of these shorter 

FFTs are reused to compute many outputs, thus greatly 

reducing the total computational cost. The radix-2 

decimation-in-time and decimation-in-frequency fast Fourier 

transforms (FFTs) are the simplest FFT algorithms. Like all 

FFTs, they gain their speed by reusing the results of smaller, 

intermediate computations to compute multiple DFT 

frequency outputs. 

 

1) 4-point Radix-2 FFT:  4-point transform can be reduced to 

two 2-point transforms: one for even elements, one for odd 

elements. The odd one will be multiplied by W4k. 

Diagrammatically; this can be represented as two levels of 

butterflies. Notice that using the identity WN/2n = WN2n, we 

can always express all the multipliers as powers of the same 

WN (in this case we choose N=4). 

 
Fig. 2: 4-point Radix-2 FFT 

2) 8-point Radix-2 FFT:  An 8 input butterfly diagram has 12 

2-input butterflies and thus 12*2 = 24 multiplies. 

N Log N = 8 Log (8) = 24. A straight DFT has N*N 

multiplies, or 8*8 = 64 multiplies. That's a pretty good 

savings for a small sample. The savings are over 100 times 

for N = 1024 and this increases as the number of samples 

increases. 

 
Fig. 3: 8-point Radix-2 FFT 

 

3)16-point Radix-2 FFT:  16 input butterfly diagram has 32 

2-input butterflies and thus 32*2 = 64 multiplies. N Log N = 

16 Log (16) = 64. A straight DFT has N*N multiplies, or 

16*16 = 256 multiplies. 

 
Fig. 4: 16-point Radix-2 FFT 

 

http://en.wikipedia.org/wiki/Twiddle_factor
http://en.wikipedia.org/wiki/Butterfly
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4) 32-point Radix-2 FFT:  32 input butterfly diagram has 64 

2-input butterflies and thus 64*2 = 128 multiplies. N Log N = 

32 Log (32) = 128. A straight DFT has N*N multiplies, or 

32*32 = 1024 multiplies. 

 
Fig. 5: 32-point Radix-2 FFT 

 
III. VLSI ARCHITECTURES USING SPLIT-RADIX FFT 

ALGORITHM 

The split-radix FFT is a fast Fourier transform (SRFFT) 

algorithm for computing the discrete Fourier transform 

(DFT). split radix is a variant of the Cooley-Tukey FFT 

algorithm that uses a blend of radices 2 and 4: it recursively 

expresses a DFT of length N in terms of one smaller DFT of 

length N/2 and two smaller DFTs of length N/4. The split-

radix algorithm can only be applied when N is a multiple of 

4, but since it breaks a DFT into smaller DFTs it can be 

combined with any other FFT algorithm as desired. While 

calculating FFT using Radix-2 method, it can be concluded 

that the even-numbered points and the odd-numbered points 

are computed independently. This leads to the possibility of 

using different computational methods for different 

independent parts of the algorithm which will reduce 

computational complexity. Split-radix algorithm uses the 

above method by combining the simplicity of radix-2 

algorithm and lesser computational complexity of radix-4 

algorithm, achieving the lowest number of arithmetic 

operation count to compute DFT of power-of-two sizes N. 

Split-radix method recursively expresses DFT of length N in 

terms of one smaller DFT of length N/2 and two smaller 

DFTs of length N/4. Split-radix is only applicable when N is 

a multiple of 4, but we can combine this with other FFT 

algorithms. The algorithm for the fast and less complexity 

computation of the DFT by Split-radix (SRFFT) was 

developed by Duhamel and Hollmann [16], [17] for data 

sequences having a length N that is an integer power of 2. 

According to them, the even-numbered samples of the N-

point DFT can be calculated by 
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Those even-numbered DFT points can be calculated without 

any additional multiplications. So, radix-2 algorithm is 

sufficient for the above calculation. The odd-numbered 

samples X(2k+1) requires an additional multiplication of  

twiddle factor 
n

NW
. 

To implement this, radix-4 algorithm is used for its lesser 

computational complexity. Using radix-4 algorithm for the 

odd –numbered samples of the N-point DFT, the following 

N/4-point DFTs are obtained. 
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Hence, the N-point DFT now has been decomposed into one 

N/2-point DFT without phase factor and another two N/4-

point DFTs with phase factor. Fig. 6 shows the split-radix 

butterfly unit and Fig. 7 shows its equivalent. 

 

 
Fig. 6: Split-radix butterfly unit 

 

http://en.wikipedia.org/wiki/Fast_Fourier_transform
http://en.wikipedia.org/wiki/Discrete_Fourier_transform
http://en.wikipedia.org/wiki/Cooley-Tukey_FFT_algorithm
http://en.wikipedia.org/wiki/Cooley-Tukey_FFT_algorithm
http://en.wikipedia.org/wiki/Recursion
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Fig. 7: Equivalent representation of Split-radix butterfly unit 

 

 
Fig. 8: Radix-2 butterfly used in SRFF architectures 

 

A. 4-point SRFFT 

The 4-point SRFFT uses one split radix butterfly unit and one 

radix-2 butterfly for computation of final output. 

 
Fig. 9: 4-point SRFFT 

 

B. 8-point SRFFT 

The 8-point SRFFT uses 3 split radix butterfly unit and 3 

radix-2 butterfly unit for computation of final output. 

 

 
Fig. 10: 8-point SRFFT 

C. 16-point SRFFT 

The 16-point SRFFT uses 9 split radix butterfly unit and 5 

radix-2 butterfly for computation of final output. 

 
Fig. 11:16-point SRFFT 

 

D. 32-point SRFFT 

The 32-point SRFFT uses 23 split radix butterfly unit and 11 

radix-2 butterfly for computation of final output. 

 
Fig. 12: 32-point SRFFT 
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IV. SOFTWARE SIMULATION RESULTS 

FFT block of signal length 4 is simulated and synthesized 

using the Xilinx Design Suite 12.1. The RTL block thus 

obtained for the decimation in time domain radix -2 Fast 

Fourier transform algorithm is shown 

 
Fig. 13: RTL Schematic of 4-point Radix-2 FFT 

 

 

 
Fig. 14: Simulation result of 4-point SRFFT 

 
Fig. 15: Simulation result of 8-point SRFFT 

 

 
Fig. 16: Simulation result of 16-point SRFFT 

 

 
Fig. 17: Simulation result of 32-point SRFFT 
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TABLE I 

Memory utilization and Minimum Delay of Radix-2 FFT 

 Total 

memory usage 

Minimum Delay 

4 point FFT 159000 kb 2.780 ns 

8 point  FFT 166488 kb 7.663 ns 

16 point  FFT 195800 kb 12.588 ns 

32 point  FFT 324568 kb 17.514 ns 

 

TABLE II 

Memory utilization and Minimum Delay of Split Radix FFT 

 Total 

memory usage 

Minimum Delay 

4 point FFT 159000 kb 2.107 ns 

8 point  FFT 165656 kb 7.000 ns 

16 point  FFT 189272 kb 8.444 ns 

32 point  FFT 266776 kb 13.362 ns 

 

Table I and Table II shows the memory utilization and the 

minimum delay of Radix-2 FFT nd Split Radix FFT for 

different signal length respectively. From the tables it can be 

observed that the there is almost same memory usage for the 

both architectures when the signal length is very small. 

However the memory usage is improved for Split Radix FFT 

architectures by an amount of 6.5 megabytes as the signal 

length is increased. And finally there is a great improvement 

in the memory usage required by an amount of 58 megabytes 

for Split Radix FFT compared to that of Radix-2 FFT for the 

very high signal length. It can be clearly seen in the below 

2D graph in Fig. 18.  

 
Fig. 18: Device utilization with variable input signal length 

It can also be observed from the tables that the minimum 

delay of Split Radix is reduced compared to that of Radix-2 

FFT architecture. Split Radix FFT architecture has minimum 

delay which is almost 0.6 ns less than the minimum delay of 

Radix-2 FFT when the signal length is very small. This can 

be clearly observed in the below 2D graph in Fig. 19. 

 

 
Fig. 19: Minimum delay with variable input signal length 

 

Below Fig. 20 and Fig. 21 shows the same comparison 

graphs in 3D view of the graph in Fig. 18 and Fig. 19. 

 
Fig. 20: 3D view of Device utilization with input signal 

length 
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Fig. 21: 3D view of Device utilization with input signal 

length 

 

V. CONCLUSIONS 

This paper has reported two efficient VLSI architectures of 

DIT-FFT. Both proposed architectures are designed for 

complex inputs with a data width of 16 bits, maintained 

constant all along. The simulation outputs of proposed 

architectures have not shown much deviation from numerical 

values. But, proposed architecture using Radix-2 algorithm 

has high memory usage and also has huge number of 

arithmetic operations which causes the delay to be maximum 

as the signal length increases; this drawback has been 

overcome in the later VLSI architecture using Split Radix 

FFT Algorithm. Performance parameters of both 

architectures shown in table and graph clearly show the 

improvement of SRFFT VLSI architecture. The Delay of 

SRFFT less than that of Radix-2 FFT as the signal length 

increases. 
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