
International Journal For Technological Research In Engineering

Volume 1, Issue 10, June-2014 ISSN (Online): 2347 - 4718

DETECTION OF BAD SMELLS IN SOURCE CODE ACCORDING TO

THEIR OBJECT ORIENTED METRICS

Anshu Rani
1
 (Research Scholar), Harpreet Kaur

2
 (Assi Prof)

Department of Computer Engineering, UCOE
Punjabi University, Patiala

Abstract: Refactoring is a technique for improving software

structure without changing its behavior which can be used

toremove bad smells and increases software maintainability

Code smells are structural characteristics of software that

may indicate a code or design problem that makes software

hard to evolve and maintain, and may trigger refactoring of

code. There are many automatic detection tools to help

humans in finding smells but these tools are platform

dependent. For e.g. in eclipse we can execute the only java

code. Automation detection tools are limited for detecting

some bad smells. So to detect the more number of bad

smells, we have to work on many detection tools so the

window base GUI application is developed in the visual

studio tool which detects more bad smells according to their

Object Oriented Metrics. This paper reviews the window

base GUI application developed in visual studio tool for

code smell detection. This paper describes detection of bad

smells and used software metrics to identify the

characteristics of bad smells “lazy class” , “long method” ,”

comment lines” and “large class”
Keywords: Bad Smell, bad smell detection window base
GUI application, Software Metrics

I. INTRODUCTION
Software need to be changed by time to time for different
reasons such as requirement change, technology change,

cost-benefits change. Developers must modify software
timely. Sometimes, little modified code in software loses
good design of software and leads to degrade maintainability.
One of the techniques that upgrade maintainability is

refactoring. Refactoring modifies the internal code structure
of any project system without affecting the external behavior
of the system to improve the quality of the design.The
process of refactoring has three distinct stages to its
application: identify location where to apply a refactoring,

choose an appropriate refactoring technique as a solution and
apply therefactoring. [2]

A. Bad Smells in Code
If we implement refactoring alone on code, then will not benefits

of doing it, until we do not find the correct location where we

should apply refactoring. For the easiness of developer to find

the correct location for applying refactoring ,fowler give a idea

of bad smells .Bad smells is the symptoms of bad design .Bad

smells does not effect on code physically , it only degrade the

quality of software by timely.Here we focus our attention on

code smells and on window base GUI application developed for

their detection. Code smells are

structural characteristics of software that may specify a code
or design problem but they do not produce run time error and
can make software hard to understand and maintain.
Theconcept of bad smells was given by Fowler, who defined
many kinds of smells. As programmer detectbad smells in
code, they should examine whether their presence hints at
some relevant degradation in the design of the code, and if it
found then decide which refactoring should be applied on
code.

B. Some bad smells are summarized below:

 Long Method: when method is too long means more
number of lines of code. 


 Large Class: Classes that have large numbers of

instance variables and large number of lines of
code. Sometimes they are only used occasionally
large classes can also suffer from code duplication. 


 Long Parameter List: Long parameter lists are hard

to understand. Long parameter list means that a
method takes too many parameters. 


 Comments:If the comments are present in the code

more than the lines of code. 


 Switch Statements: Switch statements may produce
duplication. You can find similar switch statements
scattered in the program in several places. . Maybe
classes and polymorphism would be more
appropriate 


 Lazy Class:Classes that are not doing much work

and number of method is null. 


 Temporary Field: when some of the instance
variables in a class are only used occasionally.[5] 

II. LITERATURER SURVEY

It presents about the previous studies of evaluating detect
code smells, refactoring and object oriented metrics: what
the other researchers have done regarding code smells
detection.

Jan Verelstet al. discusses the guidelines the improvement
of coupling and cohesion for specific refactoring. This
elaborates on a validation of these guidelines regarding their
improvement and applicability. Unfortunately,
refactoringconcentrate on the treatment of symptoms (the so
called code-smells), thus improvements depend a lot on
theskills of the maintainer .Therefore, this paper
analyzeshow refactoring manipulate coupling/cohesion
characteristics,and how to identify refactoring opportunities
that improve characteristics [1]KarnamSreenuet al.

www.ijtre.com Copyright 2014.All rights reserved. 1211

International Journal For Technological Research In Engineering

Volume 1, Issue 10, June-2014 ISSN (Online): 2347 - 4718

discussesthe Merge Class Refactoring method and Replace

Temp Refactoring method will be identified by providing

metric values based on Number of Methods (NOM), Instance

Variable per Method in Class (IVMC) and some existing

metrics like Lines of Code (LOC), Depth of Inheritance

(DIT) . By identifying these metric values we can apply the

above two refactoring methods directly on the source code to

reduce the total number of lines of code (LOC) and to

improve the structure of existing code. [2]Marco Zanoniaet

al. This paper presented a comparison of four code smell

detection tools on six versions of a medium-size

softwareproject. We observed that we have the best

agreement in the results for the God Class detection and then

for the Large Class and Long Parameter List smells.In this

paper we focus our attention on code smells and on automatic

tools developed for their detection. [3]AmjanShaiket al.

(2010) discusses that the about designing and development of

Object Oriented (OO) have become popular in today’s

software development environment. Design metrics play a

vital role in helping developers to appreciate design aspects

of software i.e. improve software quality and developer

productivity. This paper, is trying to edify about the OOD,

metrics, quality and the relationship between these. In this

paper, the empirical evidence underneath the role of OOD

Metrics specifically a subset of the CK Metric suite ids

provided. [4].
Ganesh B. Regulwar et al. This paper discusses refactoring,
which is one of the techniques to keep software maintainable.
However, refactoring itself will not bring the full benefits, if
we do not understand when refactoring needs to be applied.
To make it easier for a software developer to decide whether
certain software needs refactoring or not, Fowler & Beck
(Fowler & Beck 2000) give a list of bad code smells. Fowler
& Beck’s idea was that bad code smells are a more concrete
indication for the refactoring need than some vague idea of
programming aesthetics. . In addition, for each bad code
smell Fowler (Fowler 2000) introduces a set of refactoring
(move methods, inline temp, etc.) with step wise instructions
on how each smell can be removed. Therefore, the reader
should realize that the refactoring concept also includes
detailed instructions on how to actually improve the source
code [5]

III. PROPOSED WORK
Window base GUI application has been developed to detect
bad smells.It detects more bad smells according to their
Object Oriented Metrics like Coupling, Depth of inheritance,
Weighted Methods, Number of Methods (NOM) and Instance
Variable in a Class. Long method, Lazy class, Comment lines
and large class bad smells are detected using GUI application
developed. This application detects bad smells on both java
source code and .net source code. Also provides a bad smell
description framework and bad smell interpretation
framework to collect the information regarding bad smells.
These frameworks mainly contain two parts.

A. Bad Smell Description Framework:

 Bad Smell Name: It is the description of the bad 

smell which is going to detect.
 Identifying main characteristics from description of

the bad smell. 


B. Bad Smell Interpretation Framework:

 Bad Smell Name: It is the description of the bad
smell which is going to detect. 


 Measurement Process: Describe possible

measurement metrics that when applied to source-
code can help identify the problem. 


 Interpretation Rules: The interpretation indicates a

set of rules on how the metrics can be used to
identify possible problem. We are using existing
metrics and new metrics to identify bad smells 
“lazy class” ,“long method”,” comment lines ” and
“large class” 

IV. EXPERIMENTATION

The experimentation done is as following:
Tool used to create window base GUI application: visual
studio ultimateA window base GUI application is developed
through thetool: visual studio 2010 .this application is
created in the c#.net. This application is developed for
detecting the various code smells according to their metrics
rules. Source code of a project is taken in dotnet language
The project of BANKING system is taken in dotnet
language. The BANKING system contains 22 classes. The
source code of all the classes is in dotnet language.
Tool used detects the code smells of the existing code:
window base application developed in visual studio tool This
window base GUI application is used to detect the code
smells of a source code. In this, different types of metrics are
measured according to code smell. Each bad smells has
different metrics rules.

A.Long Method
The following metrics for the detection of long method
smell: [3]

 Rule 1: If Number of line of code (NLOC) is greater
than 50 and variables declared are not used. 


 Rule 2: If Cyclomatic complexity is greater than 5(if

else). 
 Rule 3: Halstead effort E=D*V should be lower. 

(operators and operands)
If anyof the above rules is/ are true, Long method bad smell
is detected

www.ijtre.com Copyright 2014.All rights reserved. 1212

International Journal For Technological Research In Engineering

Volume 1, Issue 10, June-2014 ISSN (Online): 2347 - 4718

Fig. 1 Detection of long method bad smell
B. Large Class
The following metrics for the detection of large class smells:
[3]

 Rule1: If number of lines of code are greater than
300 and has more than 5 long methods. 


 Rule 2: If Number of instance variables and methods

are greater than 15 and 10 respectively. 
 Rule 3: if depth of inheritance tree (DIT)>3 

 Rule 4: coupling, if number of operation calls and 
number of called classed are high.

If anyof the above rules is/ are true, Large class bad smell is
detected.

Fig. 2 Detectionof large class bad smell

C. Lazy Class
The following metrics for the detection of lazy class smells:
[3]

 Rule 1: If number of method=0. 

 Rule2: if LOC=100 and WMC/NOM<=2 
If anyof the above rules is/ are true, Lazy class bad smell is
detected.

Fig. 3 detection of lazy class bad smell

C. Comment Lines
Rule: If comment lines are greater than or equal to Average
lines of code
Average lines of code= (lines of code/3 in C)

Fig. 4 Detection of comment lines bad smell

V. RESULTS AND DISSCUSSIONS

A. Case Study:
The case study taken for detection of bad smells is the
BANKING system project in dotnet language. The four bad
smells are detected in the banking system source code using
GUI application developed. The following metrics (CC,
NLOC, DIT, coupling, WMC and Halstead effort) in dotnet
are implemented tofind out the four bad smells in the source
code.

B. Various metrics that are being used are :

 Depth of inheritance tree: The depth of inheritance
hierarchy is defined as the maximum length from
the class node to the root of the tree and is measured
by the number of ancestor classes. 
The class form4.cs has DIT >3 (rule of bad smell 
“large class”) 


 Coupling: The measure of the module’s

independence, fewer parameter flowing into or out
from a module imply looser coupling. 
The classesform7.cs, form9.cs, form10.cs, form2.cs
and managerlogin.cs have coupling> 10 (rule of bad
smell” large class”) 


 Weighted Methods: WCM calculate the addition of

complexities of all class methods and some of
instance variables are not accessed in class. The
WCM basically measure by calculating cyclomatic
complexity. It tells maintainability of class also.The
classes form1.cs ,form11.cs ,form3.cs ,testing.cs
and process.cs have WMC/NOM <=2 (rule of bad
smell” lazy class”) 
NOM =number of methods 


 Halstead measures: which measure the number of

operators and operands, and can provide necessary
information on method complexity. 
The classes testme.cs, form9.cs, form4.cs and admin.cs
have halstead efforts >15(rule of bad smell 
“long method”) 


 Cyclomatic complexity: It represents the total

number of regions present in the flow graph of a
program. Cyclomatic Complexity is a metric of
complexity that counts the number of independent
paths. 

www.ijtre.com Copyright 2014.All rights reserved. 1213

International Journal For Technological Research In Engineering

Volume 1, Issue 10, June-2014 ISSN (Online): 2347 - 4718

The classes Admin.cs, employe.cs, form6.cs and
testme.cs have cyclomatic complexity >5 (rule of
bad smell “long method”)

 Lines of source code: Lines of Code, usually
referring to non-comment lines, meaning pure
whitespace and lines containing only comments are
not included in the metric. 
The classes form7.cs, form5.cs,form4.cs, form2.cs,
employe.cs and testme.cs have NLOC >50 (rule of
bad smell “long method”) 


 Lines of comment: the lines of comment are used to

describe the meaning of the statements which is
specified. 
The classes form10.cs and program.cshave comment
lines which are greater than or equal to Average
lines of code. 

TABLE 1 value of detected bad smells

Name Of Description Of Bad Smell Value Of
Bad Smell Bad Smell
Long Too long method that is 21
Method difficult to understand

Large Class classes have too many 12
 instance variables, methods

Lazy Class A class having little 5
 functions

Comment More comment lines are 2
Lines present in code

VI. CONCLUSION

The four bad smells are detected in the banking system
source code using GUI application developed. The measured
object oriented metrics shows the value of each metric in
their respective code smells detected on the coding.

Calculated metric values will help in applying the refactoring
methods directly on the source code to eliminate the bad
smells and to improve the structure of existing code. Like
Coupling factor will be helpful to decide whether we can

apply "MOVE" method of refactoring or not .The value of
NLOC, Cyclomatic complexity and Halstead effort will be
helpful in applying Extract Method and Replace Temp with
Query methods of refactoring.

VII. FUTURE SCOPE
 In the future the comparison will be performed

between developed window base GUI application
and Eclipse tool. 


 Refactoring methods will be applied on the basis of

calculated metrics on source code to refactor bad
smells. 

REFERENCES

[1] Jan Verelst , Bart Du Bois and Serge Demeyer,
“Refactoring - Improving Coupling and Cohesion of
Existing Code,”

[2] KarnamSreenu 1, D. B. Jagannadha Rao2
“Performance - Detection of Bad Smells In Code for

Refactoring Methods” International Journal of
Modern Engineering Research (IJMER). Vol.2,
Issue.5, Sep-Oct. 2012 pp-3727-3729

[3] Francesca ArcelliFontanaaPietroBraionea Marco
Zanonia, “Automatic detection of bad smells in
code: An experimental assessment ,” Journal of
Object Technology Published by AITO Association
Internationale pour les Technologies Objets, c JOT
2011

[4] AmjanShaik, C. R. K. Reddy, BalaManda,
Prakashini. C, Deepthi. K, “An Empirical
Validation of Object Oriented Design Metrics in
Object Oriented Systems,” Journal of Emerging
Trends in Engineering and Applied Sciences
(JETEAS), 2010.

[5] Ganesh B. Regulwar and Raju M. Tugnayat “Bad
Smelling Concept in Software Refactoring ”,
Jawaharlal Darda Institute of Engineering &
Technology, MIDC, Lohara, Yavaymal (MS),
INDIA.

[6] FOWLER, MARTIN: A list of refactoring tools
http://www.refactoring.com/tools.html

www.ijtre.com Copyright 2014.All rights reserved. 1214

