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Abstract: Today the finite element method (FEM) is 

considered as one of the well-established and convenient 

technique for the computer solution of complex problems in 

different fields of engineering: civil engineering, 

mechanical engineering, nuclear engineering, biomedical 

engineering, hydrodynamics, heat conduction, geo-

mechanics, etc. From other side, FEM can be examined as 

a powerful tool for the approximate solution of differential 

equations describing different physical processes. The 

success of FEM is based largely on the basic finite element 

procedures used: the formulation of the problem in 

variational form, the finite element dicretization of this 

formulation and the effective solution of the resulting finite 

element equations. These basic steps are the same 

whichever problem is considered and together with the use 

of the digital computer present a quite natural approach to 

engineering analysis. The objective of this course is to 

present briefly each of the above aspects of the finite 

element analysis and thus to provide a basis for the 

understanding of the complete solution process. According 

to three basic areas in which knowledge is required, the 

course is divided into three parts. The first part of the 

course comprises the formulation of FEM and the 

numerical procedures used to evaluate the element matrices 

and the matrices of the complete element assemblage. In 

the second part, methods for the efficient solution of the 

finite element equilibrium equations in static and dynamic 

analyses will be discussed. In the third part of the course, 

some modelling aspects and general features of some Finite 

Element Programs (ANSYS, NISA, LS-DYNA) will be 

briefly examined. 

 

I. INTRODUCTION 

The finite element method (FEM), sometimes referred to as 

finite element analysis (FEA), is a computational technique 

used to obtain approximate solutions of boundary value 

problems in engineering. Simply stated, a boundary value 

problem is a mathematical problem in which one or more 

dependent variables must satisfy a differential equation 

everywhere within a known domain of independent variables 

and satisfy specific conditions on the boundary of the 

domain. Boundary value problems are also sometimes called 

field problems. The field is the domain of interest and most 

often represents a physical structure. The field variables are 

the dependent variables of interest governed by the 

differential equation. The boundary conditions are the 

specified values of the field variables (or related variables 

such as derivatives) on the boundaries of the field. Depending 

on the type of physical problem being analyzed, the field 

variables may include physical displacement, temperature, 

heat flux, and fluid velocity to name only a few. 

 

II. HOW DOES THE FINITE ELEMENT METHOD 

WORK 

The general techniques and terminology of finite element 

analysis will be introduced with reference to Figure 1.1. The 

figure depicts a volume of some material or materials having 

known physical properties. The volume represents the 

domain of a boundary value problem to be solved. For 

simplicity, at this point, we assume a two-dimensional case 

with a single field variable (x, y) to be determined at every 

point P(x, y) such that a known governing equation (or 

equations) is satisfied exactly at every such point. Note that 

this implies an exact mathematical solution is obtained; that 

is, the solution is a closed-form algebraic expression of the 

independent variables. In practical problems, the domain 

may be geometrically complex as is, often, the governing 

equation and the likelihood of obtaining an exact closed-

form solution is very low. Therefore, approximate solutions 

based on numerical techniques and digital computations are 

most often obtained in engineering analyses of complex 

problems. Finite element analysis is a powerful technique for 

obtaining such approximate solutions with good accuracy. 

 
A small triangular element that encloses a finite-sized 

subdomain of the area of interest is shown in Figure 1.1b. 

That this element is not a differential element of size dx × dy 

makes this a finite element. As we treat this example as a 

two- dimensional problem, it is assumed that the thickness in 

the z direction is constant and z dependency is not indicated 

in the differential equation. The vertices of the triangular 

element are numbered to indicate that these points are nodes. 
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A node is a specific point in the finite element at which the 

value of the field variable is to be explicitly calculated. 

Exterior nodes are located on the boundaries of the finite 

element and may be used to connect an element to adjacent 

finite elements. Nodes that do not lie on element boundaries 

are interior nodes and cannot be connected to any other 

element. The triangular element of Figure 1.1b has only 

exterior nodes. If the values of the field variable are 

computed only at nodes, how are values obtained at other 

points within a finite element? The answer contains the crux 

of the finite element method: The values of the field variable 

computed at the nodes are used to approximate the values at 

nonnodal points (that is, in the element interior) by 

interpolation of the nodal values. For the three-node triangle 

example, the nodes are all exterior and, at any other point 

within the element, the field variable is described by the 

approximate relation.  

     
where 1, 2, and 3 are the values of the field variable at the 

nodes, and N1, N2, and N3 are the interpolation functions, 

also known as shape functions or blending functions. In the 

finite element approach, the nodal values of the field variable 

are treated as unknown constants that are to be determined. 

The interpolation functions are most often polynomial forms 

of the independent variables, derived to satisfy certain 

required conditions at the nodes. These conditions are 

discussed in detail in subsequent chapters. The major point to 

be made here is that the interpolation functions are 

predetermined, known functions of the independent 

variables; and these functions describe the variation of the 

field variable within the finite element. The triangular 

element described by Equation 1.1 is said to have 3 degrees 

of freedom, as three nodal values of the field variable are 

required to describe the field variable everywhere in the 

element. This would be the case if the field variable 

represents a scalar field, such as temperature in a heat transfer 

problem. If the domain of Figure 1.1 represents a thin, solid 

body subjected to plane stress, the field variable becomes the 

displacement vector and the values of two components must 

be computed at each node. In the latter case, the three-node 

triangular element has 6 degrees of freedom. In general, the 

number of degrees of freedom associated with a finite 

element is equal to the product of the number of nodes and 

the number of values of the field variable (and possibly its 

derivatives) that must be computed at each node. How does 

this element-based approach work over the entire domain of 

interest? As depicted in Figure 1.1c, every element is 

connected at its exterior nodes to other elements. The finite 

element equations are formulated such that, at the nodal 

connections, the value of the field variable at any connection 

is the same for each element connected to the node. Thus, 

continuity of the field variable at the nodes is ensured. In fact, 

finite element formulations are such that continuity of the 

field variable across interelement boundaries is also ensured. 

This feature avoids the physically unacceptable possibility of 

gaps or voids occurring in the domain. In structural problems, 

such gaps would represent physical separation of the 

material. In heat transfer, a “gap” would manifest itself in the 

form of different temperatures at the same physical point. 

       Although continuity of the field variable from element to 

element is inherent to the finite element formulation, 

interelement continuity of gradients (i.e., derivatives) of the 

field variable does not generally exist. This is a critical 

observation. In most cases, such derivatives are of more 

interest than are field variable values. For example, in 

structural problems, the field variable is displacement but the 

true interest is more often in strain and stress. As strain is 

defined in terms of first derivatives of displacement 

components, strain is not continuous across element 

boundaries. However, the magnitudes of discontinuities of 

derivatives can be used to assess solution accuracy and 

convergence as the number of elements is increased, as is 

illustrated by the following example. 

 

III. COMPARISON OF FINITE ELEMENT AND EXACT 

SOLUTIONS 

The process of representing a physical domain with finite 

elements is referred to as meshing, and the resulting set of 

elements is known as the finite element mesh. As most of the 

commonly used element geometries have straight sides, it is 

generally impossible to include the entire physical domain in 

the element mesh if the domain includes curved boundaries. 

Such a situation is shown in Figure 1.2a, where a curved-

boundary domain is meshed (quite coarsely) using square 

elements. A refined mesh for the same domain is shown in 

Figure 1.2b, using smaller, more numerous elements of the 

same type. Note that the refined mesh includes significantly 

more of the physical domain in the finite element 

representation and the curved boundaries are more closely 

approximated. (Triangular elements could approximate the 

boundaries even better.) If the interpolation functions satisfy 

certain mathematical requirements, a finite element solution 

for a particular problem converges to the exact solution of 

the problem. That is, as the number of elements is increased 

and the physical dimensions of the elements are decreased, 

the finite element solution changes incrementally. The 

incremental changes decrease with the mesh refinement 

process and approach the exact solution asymptotically. To 

illustrate convergence, we consider a relatively simple 

problem that has a known solution.  

 
Figure 1.3a depicts a tapered, solid cylinder fixed at one end 
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and subjected to a tensile load at the other end. Assuming the 

displacement at the point of load application to be of interest, 

a first approximation is obtained by considering the cylinder 

to be uniform, having a cross-sectional area equal to the 

average area of the cylinder (Figure 1.3b). The uniform bar is 

a link or bar finite element, so our first approximation is a 

one-element, finite element model. The solution is obtained 

using the strength of materials theory. Next, we model the 

tapered cylinder as two uniform bars in series, as in Figure 

1.3c. In the two element model, each element is of length 

equal to half the total length of the cylinder and has a cross-

sectional area equal to the average area of the corresponding 

half-length of the cylinder. The mesh refinement is continued 

using a four-element model, as in Figure 1.3d, and so on. For 

this simple problem, the displacement of the end of the 

cylinder for each of the finite element models is as shown in 

Figure 1.4a, where the dashed line represents the known 

solution. Convergence of the finite element solutions to the 

exact solution is clearly indicated. 

 
On the other hand, if we plot displacement as a function of 

position along the length of the cylinder, we can observe 

convergence as well as the approximate nature of the finite 

element solutions. Figure 1.4b depicts the exact strength of 

materials solution and the displacement solution for the four-

element models. We note that the displacement variation in 

each element is a linear approximation to the true nonlinear 

solution. The linear variation is directly attributable to the 

fact that the interpolation functions for a bar element are 

linear. Second, we note that, as the mesh is refined, the 

displacement solution converges to the nonlinear solution at 

every point in the solution domain. The previous paragraph 

discussed convergence of the displacement of the tapered 

cylinder. As will be seen in, displacement is the primary field 

variable in structural problems. In most structural problems, 

however, we are interested primarily in stresses induced by 

specified loadings. The stresses must be computed via the 

appropriate stress-strain relations, and the strain components 

are derived from the displacement field solution. Hence, 

strains and stresses are referred to as derived variables. For 

example, if we plot the element stresses for the tapered 

cylinder example just cited for the exact solution as well as 

the finite element solutions for two- and four-element models 

as depicted in Figure 1.5, we observe that the stresses are 

constant in each element and represent a discontinuous 

solution of the problem in terms of stresses and strains. We 

also note that, as the number of elements increases, the jump 

discontinuities in stress decrease in magnitude. This 

phenomenon is characteristic of the finite element method. 

The formulation of the finite element method for a given 

problem is such that the primary field variable is continuous 

from element to element but the derived variables are not 

necessarily continuous. In the limiting process of mesh 

refinement, the derived variables become closer and closer to 

continuity. Our example shows how the finite element 

solution converges to a known exact solution (the exactness 

of the solution in this case is that of strength of materials 

theory). 

 
If we know the exact solution, we would not be applying the 

finite element method! So how do we assess the accuracy of 

a finite element solution for a problem with an unknown 

solution. The answer to this question is not simple. If we did 

not have the dashed line in Figure 1.3 representing the exact 

solution, we could still discern convergence to a solution. 

Convergence of a numerical method (such as the finite 

element method) is by no means assurance that the 

convergence is to the correct solution. A person using the 

finite element analysis technique must examine the solution 

analytically in terms of (1) numerical 
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convergence,(2)reasonableness, (3)whether the physical laws 

of the problem are satisfied (is the structure in equilibrium. 

Does the heat output balance with the heat input), and (4) 

whether the discontinuities in value of derived variables 

across element boundaries are reasonable. 

 

IV. CONCLUSION 

FEM was treated previously as a generalization of the 

displacement method for shaft systems. For a computation of 

beams, plates, shells, etc. by FEM, a construction is 

presented in a view of element assembly. It is assumed that 

they are connected in a finite number of nodal points. Then it 

is considered that the nodal displacements determine the field 

of displacements of each finite element. That gives the 

possibility to use the principle of virtual displacements to 

write the equilibrium equations of element assembly so, as 

made for a calculation of shaft systems.  
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