
International Journal For Technological Research In Engineering

Volume 2, Issue 1, September-2014 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2014.All rights reserved. 38

IMPLEMENTATION OF PARALLEL CYCLIC REDUNDANCY

CHECK FOR HIGH SPEED COMMUNICATION USING FPGA

P. Veena
1
, Prof. S. Jagadeesh

2
, S. Rekha

3

1
M. Tech Student,

2
Head of Department,

3
Assistant Professor

Department of Electronics and Communication Engineering, SSJ Engineering College,

Affiliated to JNTU-Hyderabad, India

ABSTRACT: A cyclic redundancy check (CRC) is an error-

detecting code commonly used in digital networks and

storage devices to detect accidental changes to raw data.

Blocks of data entering these systems get a short check

value attached, based on the remainder of a polynomial

division of their contents; on retrieval the calculation is

repeated, and corrective action can be taken against

presumed data corruption if the check values do not match.

I. INTRODUCTION

Cyclic redundancy check is commonly used in data

communication and other fields such as data storage, data

compression, as a vital method for dealing with data errors.

Usually, the hardware implementation of CRC computations

is based on the linear feedback shift registers (LFSRs), which

handle the data in a serial way. Though, the serial calculation
of the CRC codes cannot achieve a high throughput. In

contrast, parallel CRC calculation can significantly increase

the throughput of CRC computations. For example, the

throughput of the 32-bit parallel calculation of CRC-32 can

achieve several gigabits per second However, that is still not

enough for high speed application such as Ethernet networks.

A possible solution is to process more bits in parallel;

Variants of CRCs are used in applications like CRC-16

BISYNC protocols, CRC32 in Ethernet frame for error

detection, CRC8 in ATM, CRC-CCITT in X-25 protocol,

disc storage, SDLC, and XMODEM.

A. CRC’s in high speed wireless LAN:

In networking environments, the cyclic redundancy check

(CRC) is widely utilized to determine whether errors have

been introduced during transmissions over physical links. In

this paper, we focus on the CRC calculation in WLAN where

the packet size is huge and hence slow CRC calculation may

become bottleneck for communication process. Based on this

concept, paper present a novel implementation of the CRC

implementation through multiple execution units that

calculate CRC on different part of packet and then combine

the result to get the final CRC. Consequently, the number of
cycles utilized to recalculate the CRC codes is dramatically

reduced. Furthermore, estimation on the maximum

throughput is made based on synthesis results of our

implementation and under that assumption, calculate actual

CRC operation has been done. A performance study of the

project is done by calculation of CRC with 2, 4, 8 execution

units on same data block. There are several techniques for

generating check bits that can be added to a message. Perhaps

the simplest is to append a single bit, called the ―parity bit,‖

which makes the total number of 1-bits in the code vector

(message with parity bit appended) even (or odd). If a single

bit gets altered in transmission, this will change the parity

from even to odd (or the reverse). The sender generates the
parity bit by simply summing the message bits modulo 2—

that is, by exclusive or’ing them together. It then appends the

parity bit (or its complement) to the message. The receiver

can check the message by summing all the message bits

modulo 2 and checking that the sum agrees with the parity

bit. Equivalently, the receiver can sum all the bits (message

and parity) and check that the result is 0 (if even parity is

being used).This simple parity technique is often said to

detect 1-bit errors. Actually it detects errors in any odd

number of bits (including the parity bit), but it is a small

comfort to know you are detecting 3-bit errors if you are
missing 2-bit errors.

Fig 1: XOR Tree

Other techniques for computing a checksum are to form the

exclusive or of all the bytes in the message, or to compute a

sum with end-around carry of all the bytes. In the latter

method the carry from each 8-bit sum is added into the least

significant bit of the accumulator. It is believed that this is

more likely to detect errors than the simple exclusive or, or

the sum of the bytes with carry discarded. A technique that is
believed to be quite good in terms of error detection, and

International Journal For Technological Research In Engineering

Volume 2, Issue 1, September-2014 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2014.All rights reserved. 39

which is easy to implement in hardware, is the cyclic

redundancy check. This is another way to compute a

checksum, usually eight, 16, or 32 bits in length, that is

appended to the message. We will briefly review the theory
and then give some algorithms for computing in software a

commonly used 32-bit CRC checksum. The CRC is based on

polynomial arithmetic, in particular, on computing the

remainder of dividing one polynomial in GF(2) (Galois field

with two elements) by another. It is a little like treating the

message as a very large binary number, and computing the

remainder on dividing it by a fairly large prime such as

Intuitively, one would expect this to give a reliable

checksum. A polynomial in GF(2) is a polynomial in a single

variable x whose coefficients are 0 or 1. Addition and

subtraction are done modulo 2—that is, they are both the

same as the exclusive or operator. For example, the sum of
the polynomials

x3 + x + 1 and

x4 + x3 + x2 + x

is as is their difference. These polynomials are not usually

written with minus signs, but they could be, because a

coefficient of –1 is equivalent to a coefficient of 1.

Multiplication of such polynomials is straightforward. The

product of one coefficient by another is the same as their

combination by the logical and operator, and the partial

products are summed using exclusive or. Multiplication is not

needed to compute the CRC checksum. Division of
polynomials over GF(2) can be done in much the same way

as long division of polynomials over the integers. Below is an

example.

The reader might like to verify that the quotient of multiplied

by the divisor of x3 + x + 1 plus the remainder of equals the

dividend. The CRC method treats the message as a

polynomial in GF(2). For example, the message 11001001,

where the order of transmission is from left to right (110…)

is treated as a representation of the polynomial x7 + x6 + x3

+ 1. The sender and receiver agree on a certain fixed

polynomial called the generator polynomial. For example, for
a 16-bit CRC the CCITT (Comité Consultatif Internationale

Télégraphique et Téléphonique)1 has chosen the polynomial

x16 + x12 + x5 + 1 which is now widely used for a 16-bit

CRC checksum. To compute an r-bit CRC checksum, the

generator polynomial must be of degree r. The sender

appends r 0-bits to the m-bit message and divides the

resulting polynomial of degree m + r – 1 by the generator

polynomial. This produces a remainder polynomial of degree

r – 1 (or less). The remainder polynomial has r coefficients,

which are the checksum. The quotient polynomial is

discarded. The data transmitted (the code vector) is the

original m-bit message followed by the rbit checksum.

Hardware feedback shift register:

Fig 2: Feedback Shift Register

Initialize the CRC register to all 0-bits. Get first/next

message bit m. If the high-order bit of CRC is 1, Shift CRC

and m together left 1 position, and XOR the result with the

low-order r bits of G. Otherwise, Just shift CRC and m left 1

position. If there are more message bits, go back to get the

next one. CRC is playing a main role in the networking

environment to detect the errors. With challenging the speed
of transmitting data, to synchronize with speed, it’s

necessary to increase speed of CRC generation. Most

electrical and computer engineers are familiar with the cyclic

redundancy check (CRC). Many know that it’s used in

communication protocols to detect bit errors, and that its

essentially a remainder of the modulo-2long division

operation. Some have had closer encounters with the CRC

and know that it’s implemented as a linear feedback shift

register (LFSR) using flip-flops and XOR gates. They likely

used an online tool or an existing example to generate

parallel CRC code for a design .

Fig3: Hardware CRC5 Implementation

Fast CRC:

Our fast CRC update method is extended from the parallel

CRC calculation and can adapt to a number of bits processed

in parallel. The method can also reduce the data traffic

and power consumption of the CRC calculation unit.

Fig4: Fast CRC Update Architecture

F-matrix parallel CRC generation:

F-matrix follows the algorithm as:

International Journal For Technological Research In Engineering

Volume 2, Issue 1, September-2014 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2014.All rights reserved. 40

Fig 5:F-matrix algorithm

Parallely data input is processed; it is ANDed with the F-

matrix generation from the generated polynomial. Result of
that will XORed with present state CRC checksum. The final

result will obtained after (k+m)/w cycles. Generation of F-

matrix:

F-matrix generated from the generated polynomial, matrix

form can be represented as:

Where{p0……pm-1}is generator polynomial. For example,
the generator polynomial for CRC4 is {1, 0, 0, 1, 1} and w-

bits are parallely processed.

Here w=m=4, for that matrix calculated as follow. Parallel
architecture: Parallel architecture based on F- matrix‟d‟ is

data that is parallel processed (i.e. 32bit), 'X is next state, X is

current state (generated CRC), F(i)(j) is the ith row and jth

column of FW matrix. If X = [xm1 …..x1 x0]T is utilized to

denote the state of the shift registers, in linear system theory,

the state equation for LFSRs can be expressed in modular 2

arithmetic as follow.

Xi´= (P0⊗ Xm-1)⊕d

Where, X(i) represents the state of the registers, X(i + 1)
denotes the state of the registers, d denotes the one bit shift-in

serial input. F is an m x m matrix and G is a 1 x m matrix. G

= [0 0 --------0 1]T This can be represented in the matrix

form as

Finally it can rewritten as

If W-bits are parallel processed,the result of the CRC will
generated after (k+m)/w cycles.

II. CONCLUSION

Generally when high-speed data transmission is required

serial implementation is not preferred because of slow

throughput. So parallel implementation is preferred which

takes less time. CRC-32 requires 17 clock cycles to transmit

64bytes of data. But CRC-64 needs 9 clock cycles to

transmit the same data.So, it drastically reduces computation

time to 50% and same time increases the throughput.

Results:

 REFERENCES

[1] Peterson, W. W. and Brown, D. T. (January 1961).

"Cyclic Codes for Error Detection". Proceedings of

the IRE 49 (1):228–235. doi: 10.1109/JRPROC.

1961. 287814.

[2] Ritter, Terry (February 1986). "The Great CRC

Mystery". Dr. Dobb's Journal 11 (2): 26–34, 76–83.

Retrieved 21 May 2009.

[3] Stigge, Martin; Plötz, Henryk; Müller, Wolf;

Redlich, Jens-Peter (May 2006). Reversing CRC –

Theory and Practice. Berlin: Humboldt University
Berlin. p. 17. Retrieved 4 February 2011. "The

presented methods offer a very easy and efficient

way to modify your data so that it will compute to a

CRC you want or at least know in advance."

[4] Cam-Winget, Nancy; Housley, Russ; Wagner,

David; Walker, Jesse (May 2003). "Security Flaws

in 802.11 Data Link Protocols". Communications of

the ACM 46 (5): 35–39. doi : 10.1145/769800.

769823.

[5] Williams, Ross N. (24 September 1996). "A

http://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1109%2FJRPROC.1961.287814
http://dx.doi.org/10.1109%2FJRPROC.1961.287814
http://www.ciphersbyritter.com/ARTS/CRCMYST.HTM
http://www.ciphersbyritter.com/ARTS/CRCMYST.HTM
http://www.ciphersbyritter.com/ARTS/CRCMYST.HTM
http://en.wikipedia.org/wiki/Dr._Dobb%27s_Journal
http://sar.informatik.hu-berlin.de/research/publications/SAR-PR-2006-05/SAR-PR-2006-05_.pdf
http://sar.informatik.hu-berlin.de/research/publications/SAR-PR-2006-05/SAR-PR-2006-05_.pdf
http://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1145%2F769800.769823
http://dx.doi.org/10.1145%2F769800.769823
http://www.repairfaq.org/filipg/LINK/F_crc_v3.html
http://www.repairfaq.org/filipg/LINK/F_crc_v3.html

International Journal For Technological Research In Engineering

Volume 2, Issue 1, September-2014 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2014.All rights reserved. 41

Painless Guide to CRC Error Detection Algorithms

V3.00". Retrieved 5 June 2010.

[6] WH; Teukolsky, SA; Vetterling, WT; Flannery, BP

(2007). "Section 22.4 Cyclic Redundancy and Other
Checksums". Numerical Recipes: The Art of

Scientific Computing (3rd ed.). New York:

Cambridge University Press.ISBN 978-0-521-

88068-8.

[7] Koopman, Philip; Chakravarty, Tridib (June

2004)."Cyclic Redundancy Code (CRC) Polynomial

Selection for Embedded Networks". The

International Conference on Dependable Systems

and Networks: 145 – 154. doi : 10.1109/DSN.

2004.1311885. ISBN 0-7695-2052-9. Retrieved 14

January 2011.

[8] Cook, Greg (6 July 2012). "Catalogue of
parametrised CRC algorithms". Retrieved 7 July

2012.

[9] Castagnoli, G.; Bräuer, S.; Herrmann, M. (June

1993). "Optimization of Cyclic Redundancy-Check

Codes with 24 and 32 Parity Bits". IEEE

Transactions on Communications 41 (6):

883. doi:10.1109/26.231911.

[10] Koopman, Philip (July 2002). "32-Bit Cyclic

Redundancy Codes for Internet Applications". The

International Conference on Dependable Systems

and Networks: 459–468. doi : 10.1109/DSN.2002.
1028931.ISBN 0-7695-1597-5. Retrieved 14

January 2011.

[11] Brayer, Kenneth (August 1975). Evaluation of 32

Degree Polynomials in Error Detection on the

SATIN IV Autovon Error Patterns. National

Technical Information Service. p. 74. Retrieved 3

February 2011.

[12] Hammond, Joseph L., Jr.; Brown, James E.; Liu,

Shyan-Shiang (1975). "Development of a

Transmission Error Model and an Error Control

Model". Unknown (National Technical Information
Service, published May 1975) 76: 74. Bibcode:

1975STIN...7615344H. Retrieved 7 July 2012.

[13] Brayer, Kenneth; Hammond, Joseph L., Jr.

(December 1975)

http://apps.nrbook.com/empanel/index.html
http://apps.nrbook.com/empanel/index.html
http://apps.nrbook.com/empanel/index.html
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/978-0-521-88068-8
http://en.wikipedia.org/wiki/Special:BookSources/978-0-521-88068-8
http://www.ece.cmu.edu/~koopman/roses/dsn04/koopman04_crc_poly_embedded.pdf
http://www.ece.cmu.edu/~koopman/roses/dsn04/koopman04_crc_poly_embedded.pdf
http://www.ece.cmu.edu/~koopman/roses/dsn04/koopman04_crc_poly_embedded.pdf
http://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1109%2FDSN.2004.1311885
http://dx.doi.org/10.1109%2FDSN.2004.1311885
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-7695-2052-9
http://reveng.sourceforge.net/crc-catalogue/all.htm
http://reveng.sourceforge.net/crc-catalogue/all.htm
http://reveng.sourceforge.net/crc-catalogue/all.htm
http://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1109%2F26.231911
http://www.ece.cmu.edu/~koopman/networks/dsn02/dsn02_koopman.pdf
http://www.ece.cmu.edu/~koopman/networks/dsn02/dsn02_koopman.pdf
http://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1109%2FDSN.2002.1028931
http://dx.doi.org/10.1109%2FDSN.2002.1028931
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-7695-1597-5
http://www.dtic.mil/srch/doc?collection=t3&id=ADA014825
http://www.dtic.mil/srch/doc?collection=t3&id=ADA014825
http://www.dtic.mil/srch/doc?collection=t3&id=ADA014825
http://www.dtic.mil/srch/doc?collection=t3&id=ADA014825
http://en.wikipedia.org/wiki/National_Technical_Information_Service
http://en.wikipedia.org/wiki/National_Technical_Information_Service
http://en.wikipedia.org/wiki/National_Technical_Information_Service
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA013939&Location=U2&doc=GetTRDoc.pdf
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA013939&Location=U2&doc=GetTRDoc.pdf
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA013939&Location=U2&doc=GetTRDoc.pdf
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA013939&Location=U2&doc=GetTRDoc.pdf
http://en.wikipedia.org/wiki/National_Technical_Information_Service
http://en.wikipedia.org/wiki/National_Technical_Information_Service
http://en.wikipedia.org/wiki/National_Technical_Information_Service
http://en.wikipedia.org/wiki/Bibcode
http://adsabs.harvard.edu/abs/1975STIN...7615344H

