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ABSTRACT: A cyclic redundancy check (CRC) is an error-

detecting code commonly used in digital networks and 

storage devices to detect accidental changes to raw data. 

Blocks of data entering these systems get a short check 

value attached, based on the remainder of a polynomial 

division of their contents; on retrieval the calculation is 

repeated, and corrective action can be taken against 

presumed data corruption if the check values do not match. 

 

I. INTRODUCTION 

Cyclic redundancy check is commonly used in data 

communication and other fields such as data storage, data 

compression, as a vital method for dealing with data errors. 

Usually, the hardware implementation of CRC computations 

is based on the linear feedback shift registers (LFSRs), which 

handle the data in a serial way. Though, the serial calculation 
of the CRC codes cannot achieve a high throughput. In 

contrast, parallel CRC calculation can significantly increase 

the throughput of CRC computations. For example, the 

throughput of the 32-bit parallel calculation of CRC-32 can 

achieve several gigabits per second  However, that is still not 

enough for high speed application such as Ethernet networks. 

A possible solution is to process more bits in parallel; 

Variants of CRCs are used in applications like CRC-16 

BISYNC protocols, CRC32 in Ethernet frame for error 

detection, CRC8 in ATM, CRC-CCITT in X-25 protocol, 

disc storage, SDLC, and XMODEM. 
 

A. CRC’s in high speed wireless LAN: 

In networking environments, the cyclic redundancy check 

(CRC) is widely utilized to determine whether errors have 

been introduced during transmissions over physical links. In 

this paper, we focus on the CRC calculation in WLAN where 

the packet size is huge and hence slow CRC calculation may 

become bottleneck for communication process. Based on this 

concept, paper present a novel implementation of the CRC 

implementation through multiple execution units that 

calculate CRC on different part of packet and then combine 

the result to get the final CRC. Consequently, the number of 
cycles utilized to recalculate the CRC codes is dramatically 

reduced. Furthermore, estimation on the maximum 

throughput is made based on synthesis results of our 

implementation and under that assumption, calculate actual 

CRC operation has been done. A performance study of the 

project is done by calculation of CRC with 2, 4, 8 execution 

units on same data block. There are several techniques for 

generating check bits that can be added to a message. Perhaps  

 

the simplest is to append a single bit, called the ―parity bit,‖ 

which makes the total number of 1-bits in the code vector 

(message with parity bit appended) even (or odd). If a single 

bit gets altered in transmission, this will change the parity 

from even to odd (or the reverse). The sender generates the 
parity bit by simply summing the message bits modulo 2—

that is, by exclusive or’ing them together. It then appends the 

parity bit (or its complement) to the message. The receiver 

can check the message by summing all the message bits 

modulo 2 and checking that the sum agrees with the parity 

bit. Equivalently, the receiver can sum all the bits (message 

and parity) and check that the result is 0 (if even parity is 

being used).This simple parity technique is often said to 

detect 1-bit errors. Actually it detects errors in any odd 

number of bits (including the parity bit), but it is a small 

comfort to know you are detecting 3-bit errors if you are 
missing 2-bit errors. 

 

 
Fig 1: XOR Tree 

 

Other techniques for computing a checksum are to form the 

exclusive or of all the bytes in the message, or to compute a 

sum with end-around carry of all the bytes. In the latter 

method the carry from each 8-bit sum is added into the least 

significant bit of the accumulator. It is believed that this is 

more likely to detect errors than the simple exclusive or, or 

the sum of the bytes with carry discarded. A technique that is 
believed to be quite good in terms of error detection, and 
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which is easy to implement in hardware, is the cyclic 

redundancy check. This is another way to compute a 

checksum, usually eight, 16, or 32 bits in length, that is 

appended to the message. We will briefly review the theory 
and then give some algorithms for computing in software a 

commonly used 32-bit CRC checksum. The CRC is based on 

polynomial arithmetic, in particular, on computing the 

remainder of dividing one polynomial in GF(2) (Galois field 

with two elements) by another. It is a little like treating the 

message as a very large binary number, and computing the 

remainder on dividing it by a fairly large prime such as 

Intuitively, one would expect this to give a reliable 

checksum. A polynomial in GF(2) is a polynomial in a single 

variable x whose coefficients are 0 or 1. Addition and 

subtraction are done modulo 2—that is, they are both the 

same as the exclusive or operator. For example, the sum of 
the polynomials 

x3 + x + 1 and 

x4 + x3 + x2 + x 

is as is their difference. These polynomials are not usually 

written with minus signs, but they could be, because a 

coefficient of –1 is equivalent to a coefficient of 1. 

Multiplication of such polynomials is straightforward. The 

product of one coefficient by another is the same as their 

combination by the logical and operator, and the partial 

products are summed using exclusive or. Multiplication is not 

needed to compute the CRC checksum. Division of 
polynomials over GF(2) can be done in much the same way 

as long division of polynomials over the integers. Below is an 

example. 

 
The reader might like to verify that the quotient of multiplied 

by the divisor of x3 + x + 1  plus the remainder of equals the 

dividend. The CRC method treats the message as a 

polynomial in GF(2). For example, the message 11001001, 

where the order of transmission is from left to right (110…) 

is treated as a representation of the polynomial x7 + x6 + x3 

+ 1. The sender and receiver agree on a certain fixed 

polynomial called the generator polynomial. For example, for 
a 16-bit CRC the CCITT (Comité Consultatif Internationale 

Télégraphique et Téléphonique)1 has chosen the polynomial 

x16 + x12 + x5 + 1 which is now widely used for a 16-bit 

CRC checksum. To compute an r-bit CRC checksum, the 

generator polynomial must be of degree r. The sender 

appends r 0-bits to the m-bit message and divides the 

resulting polynomial of degree m + r – 1 by the generator 

polynomial. This produces a remainder polynomial of degree 

r – 1 (or less). The remainder polynomial has r coefficients, 

which are the checksum. The quotient polynomial is 

discarded. The data transmitted (the code vector) is the 

original m-bit message followed by the rbit checksum. 

Hardware feedback shift register: 

 
Fig 2: Feedback Shift Register 

 

Initialize the CRC register to all 0-bits. Get first/next 

message bit m. If the high-order bit of CRC is 1, Shift CRC 

and m together left 1 position, and XOR the result with the 

low-order r bits of G. Otherwise, Just shift CRC and m left 1 

position. If there are more message bits, go back to get the 

next one. CRC is playing a main role in the networking 

environment to detect the errors. With challenging the speed 
of transmitting data, to synchronize with speed, it’s 

necessary to increase speed of CRC generation. Most 

electrical and computer engineers are familiar with the cyclic 

redundancy check (CRC). Many know that it’s used in 

communication protocols to detect bit errors, and that its 

essentially a remainder of the modulo-2long division 

operation. Some have had closer encounters with the CRC 

and know that it’s implemented as a linear feedback shift 

register (LFSR) using flip-flops and XOR gates. They likely 

used an online tool or an existing example to generate 

parallel CRC code for a design . 

 
Fig3: Hardware CRC5 Implementation 

 

Fast CRC: 

Our fast CRC update method is extended from the parallel 

CRC calculation and can adapt to a number of bits processed 

in  parallel. The  method  can  also  reduce  the  data  traffic  

and  power  consumption of  the  CRC calculation unit. 

 
Fig4: Fast CRC Update Architecture 

 

F-matrix parallel CRC generation: 

F-matrix follows the algorithm as: 
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Fig 5:F-matrix algorithm 

 

Parallely data input is processed; it is ANDed with the F-

matrix generation from the generated polynomial. Result of 
that will XORed with present state CRC checksum. The final 

result will obtained after (k+m)/w cycles. Generation of F-

matrix: 

F-matrix generated from the generated polynomial, matrix 

form can be represented as: 

                            
Where{p0……pm-1}is generator polynomial. For example, 
the generator polynomial for CRC4 is {1, 0, 0, 1, 1} and w-

bits are parallely processed. 

 

 

 

 

 

 

 

 

 

Here w=m=4, for that     matrix calculated as follow. Parallel 
architecture: Parallel architecture based on F- matrix‟d‟ is 

data that is parallel processed (i.e. 32bit), 'X is next state, X is 

current state (generated CRC), F(i)(j) is the ith row and jth 

column of FW matrix. If X = [xm1 …..x1 x0]T is utilized to 

denote the state of the shift registers, in linear system theory, 

the state equation for LFSRs can be expressed in modular 2 

arithmetic as follow. 

 

Xi´= (P0⊗ Xm-1)⊕d 

Where, X(i) represents the state of the registers, X(i + 1) 
denotes the state of the registers, d denotes the one bit shift-in 

serial input. F is an m x m matrix and G is a 1 x m matrix. G 

= [0 0 --------0 1]T This can be represented in the matrix 

form as 

 
Finally it can rewritten as 

 
If W-bits are parallel processed,the result of the CRC will 
generated after (k+m)/w cycles. 

 

II. CONCLUSION 

Generally when high-speed data transmission is required 

serial implementation is     not preferred because of slow 

throughput. So parallel implementation is preferred which 

takes less time. CRC-32 requires 17 clock cycles to transmit 

64bytes of data. But CRC-64 needs 9 clock cycles to 

transmit the same data.So, it drastically reduces computation 

time to 50% and same time increases the throughput. 

Results: 
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