
International Journal For Technological Research In Engineering

Volume 2, Issue 2, October-2014 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2014.All rights reserved. 93

IMPLEMENTING LEFTMOST PARSING TECHNIQUES FOR FINITE

STATE AUTOMATA

Karuna Hazrati
1
, Priyanka Mittal

2
, Komal Chauhan

3

ABSTRACT: Implementation of a new compiler usually

requires making frequent adjustments to grammar

definitions. An incremental technique for updating the

parser tables after a minor change to the grammar could

potentially save much computational effort. More

importantly, debugging a grammar is made easier if the

grammar is re-checked for correctness after each small

change to the grammar. The basic design philosophy of an

incremental parser generator, and incremental algorithms

for LR(0), SLR(1) and LALR(1) parser generation are

discussed in this paper. Some of these algorithms have been

incorporated into an implementation of an incremental

LALR(1) parser generator.

Keywords: Compilers, Compilers Tools, Program

Development Environments, LR Parsers, Grammar

Debugging.

I. INTRODUCTION

A compiler represents a major software development effort.

Simple, non-optimizing compilers for relatively small

languages like Pascal may consist of several thousand lines

of source code. Production compilers for large languages like

Ada or that performs sophisticated optimization may consist

of hundreds of thousands of lines of code. A conventional

compiler is normally organized into phases. A simple

compiler would have phases for lexical analysis, syntactic

analysis, semantic analysis and code generation. Many tools

exist to help the compiler writer develop the lexical and

semantic analysis phases. There are tools based on attribute
grammar formalisms which can be used to construct semantic

analysis and code generation phases. Automatic techniques

for developing a code generator phase from a description of

the target architecture for the compiler are a subject of

current research. There are two main approaches to parsing

top-down parsing and bottom-up parsing. Top-down parsing

is usually implemented by a method known as recursive

descent, which uses a collection of mutually recursive

procedures. This method has been successfully used in many

compilers (for example, in the original compiler for Pascal).

But recursive descent is criticized for various reasons. Here
are four. First, the class of grammars it can be used with is

smaller than for bottom-up methods that accept LALR (1)

and LR (1) grammars. Second, recursion is not always

implemented efficiently and therefore parsing speed may be

adversely affected. Third, good recovery from syntactic

errors is not easy in a recursive descent compiler. Fourth,

semantic analysis and code generation actions are often

included inside the recursive descent procedures, and that

tends to spoil the modularity of the compiler. Since we were

forced to choose one approach or the other, we picked the

bottom-up approach {mostly because it is capable of being

used with a larger class of grammars. When using any

existing tool for creating a syntactic analyzer, the user must

create a grammar for the language to be compiled. The

grammar is processed by the tool, which we will call a parser

generator, and it outputs a parser suitable for inclusion in the
compiler (or, equivalently, it outputs tables that drive a

standard parsing procedure). The form of the grammar is

constrained by the class of grammars that the parser

generator can accept and by the need to associate semantic

actions with the production rules. Parser generators exist for

various classes of grammars, including: operator precedence,

LL(1), SLR(1), LALR (1), and LR (1). The compiler writer

can rarely use the grammar provided as part of the formal

language description. Published grammars are usually

designed for people to read and not for the implementer to

use. The implementer is therefore likely to and that the
grammar does not belong to the class of grammars accepted

by the parser generator. Transformations on the grammar

need to be performed, while being careful not to change the

language that it accepts. Even after the grammar has been

changed to satisfy the requirements of the parser generator,

further changes are likely to be required when the

implementer attempts to attach semantic actions to the

production rules. The term grammar debugging is often

applied to the activity of transforming a grammar in this

way.

II. DESIGNING AN INCREMENTAL PARSER
GENERATOR

There are two main design issues which must be decided

before we can discuss the algorithms needed to implement an

IPG. First, what quantum of change to the grammar should

be input by the tool before the grammar is re-checked? At

one extreme, we can recheck after the user adds or deletes

single characters to or from the grammar specifications. At

the other extreme, we can wait until the user has typed all the

desired changes before re-checking. Second, what grammar

class should the tool accept? By choosing a small class, such

as the class of regular grammars, we would make the
implementation of the tool easy but the tool would not be

useful to compiler writers. By choosing a large class, such as

LR (1), we might make the update algorithms too

complicated to implement easily. Complicated update

algorithms may also be too slow to be able to provide the

user with sufficiently fast responses. We decided that the unit

of change should be a single production rule. After each

addition of a new rule and after each deletion of a rule, the

grammar is re checked for acceptability. A change to a rule is

considered as a deletion of the original rule followed by an

International Journal For Technological Research In Engineering

Volume 2, Issue 2, October-2014 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2014.All rights reserved. 94

insertion of the corrected rule. If the unit of change were to

be made any smaller, we would be faced with the problem of

handling incomplete production rules. Larger units of change

would simply delay reporting possible problems to the user.
But, if we permit the user to add or delete rules in any order,

we must be prepared to (temporarily) accept incomplete

grammars. One symptom of an incomplete grammar is that

some production rules and non-terminal symbols may be

inaccessible.

For example, if we have entered only the following two rules:

S → begin statement list end

assignment → variable := expression

then the second rule cannot be used in any derivation that

starts from (what is apparently) the goal symbol S. A second

symptom may be that some non terminals cannot generate

sentential forms that consist only of terminal symbols. Such
non-terminals are called useless. For example, we might add

just the rule: statement list → statement list ; statement to the

grammar, above. Then, even if we temporarily consider

statement to be a terminal symbol, the grammar is incapable

of deriving sentential forms that are free from the non-

terminal symbol statement list. If we wish to allow rules to be

entered in any order and to check the grammar after each

addition, it is clear that a relaxed form of checking must be

employed. Ignoring the rules for inaccessible or useless non-

terminals would be an unsatisfactory approach. The user

could choose to enter rules in such an order that almost the
entire grammar may remain inaccessible or useless until the

last rule is defined. Current generators for bottom-up parsers

usually accept one of the LR grammar classes. Wechose to

implement the LALR(1) class of grammars because of its

power {it contains the LL(1),LR(0) and SLR(1) classes.

While it is a smaller class than the LR(1) class, the generated

parserusually has far fewer states and therefore requires

much less memory for its implementation. Italso appears to

be the case that LR(1) parsing tables require much more

work to update after asmall change to the grammar.

Conversely, parsers for the LR(0) and SLR(1) classes of
grammars require less computational effort to create than

does LALR(1). A parser generator for either of4these smaller

grammar classes may be more suitable in situations where the

computational costis important.

III. HANDLING INCOMPLETE GRAMMARS

It should be possible to analyze grammars which have not

been completely specified. Indeed, the start symbol of the

grammar may be one aspect of the grammar that remains

undefined until late in the specification process. It is

therefore appropriate to add a goal symbol of our own, ^ S,

and to invent extra rules of the form
S→ $NN $N

for each non-terminal symbol N in the partial grammar. The

$N symbol is a delimiter symbol of type N. It is an invented

symbol that represents both a beginning of input and an end

of input delimiter. Its purpose is to provide a unique context

within which N can appear if it were to be used as a goal

symbol. If unique delimiter symbols are not provided, our

support for multiple goal symbols can cause LR conflicts in

the parser construction process. But addition of these extra

rules requires us to know which symbols are non-terminals.

A reasonable strategy would be to assume that every symbol

encountered in the grammar so far is a terminal symbol,
unless the symbol appears on the left-hand side of a rule.

While a grammar is under development, it is natural for

some parts of the grammar to be incomplete [4]. Therefore,

we should not complain about useless productions until the

user claims to have completed the grammar. For example,

the user may have entered the rule

L →L , x

and no others with L as a left-hand side. It is clear that L is a

non-terminal symbol, but it is also useless. We can

circumvent this difficulty by assuming that while the

grammar is in an incomplete state, it is a grammar for

sentential forms {not a grammar for sentences in the
language. For example, with the rule for L, above, the

language includes the sentential forms

$L L $L $L L, x $L $L L, x, x $L : : : etc.

where $L is the automatically generated context delimiter

symbol. If the user makes an explicit request to check the

grammar for completeness or requests that the LALR (1)

parse tables be output, an algorithm to check the grammar

can be applied. A suitable algorithm is given in [4]. When

rules are missing from a grammar, it is impossible to know

for certain which symbols is null (can produce the empty

sentence in some derivation sequence). A symbol X may
appear to be non-nullable, but the addition of the rule 5 X ! _

would immediately change the status of X. It seems best to

assume that symbols are non-nullable until a derivation to

the empty string becomes possible using rules in the

grammar. This would also avoid generation of premature

error messages about ambiguities in the grammar.

IV. INCREMENTAL LR PARSER CONSTRUCTION

ALGORITHMS

When the grammar class is restricted to one of the LR (0),

SLR (1) or LALR(1) classes, the computation of parsing
actions for a particular grammar can be separated into two

stages. The first stage is the construction of the LR (0) sets of

items for the grammar. The second stage computes the look-

ahead sets that are associated with the LR (0) items.

Computing these look-ahead sets is trivial for a LR(0) parser

generator and is the most expensive for

LALR (1).

A. Terminology

A context-free grammar G is defined as a four-tuple G = <

VT; VN; S; P >,

where VT is the set of terminal symbols, VN is the set of
non-terminal symbols, S is a designated start symbol, and P

isthe set of production rules. As explained above, the

grammar that our algorithms process is not the same

grammar as is entered by the user. It has been augmented by

additional productions and additional symbols. We will use

the name G to refer to this augmented grammar. We will use

standard conventions when discussing grammar formalisms.

The symbol _ represents an empty string of grammar

International Journal For Technological Research In Engineering

Volume 2, Issue 2, October-2014 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2014.All rights reserved. 95

symbols. If R is a relation, then R_ represents the reflexive,

transitive closure of R.

B. Incremental Update of the LR (0) Sets of Items
Construction of the LR (0) sets of items is covered in texts on

compiler construction [2, 3, 8, 20]. A reader who is

unfamiliar with the methods and concepts of LR (0) parser

construction will and the formal definitions and notation

difficult to read. We therefore begin with an informal

introduction.

4.3.1 Informal Introduction to LR (0) Concepts

The LR(0) construction method is based on the concept of an

item. An item is simply a production rule with a marker

(frequently called a dot) inserted anywhere in the right-hand

side of the rule. The marker indicates how many symbols of

the right-hand side have been recognized at some point in a
parse. That is, all symbols to the left of the marker have been

recognized and symbols to its right have not yet been used.

An LR parser is implemented as a finite state automaton,

where each of its states corresponds to some set of items.

Each such set of items represents parsing possibilities

{showing which rules are eligible to be matched if

appropriate symbols are read by the parser. The sets of items

which give rise to the LR recognizer are constructed by a

process of closure. There are some initial items, formed by

inserting the marker at the beginnings of the right and sides

of all goal rules in the grammar. There are two closure
operations which we will call Item Closure and State

Closure. Given a set of items, the Item Closure operation

adds extra items to the set; these extra items are usually

called completion items. If any item in the set has the marker

immediately to the left of a non-terminal symbol N, then this

item generates completion items. These completion items are

formed by taking each rule which has N on its left-hand side

and placing the marker at the beginning of the right-hand

side. These completion items may, themselves, require the

addition of more completion items {which is why a closure

process is required. The Kernel operation is applied to a
grammar symbol and a set of items that has been completed

(using Item Closure), to yield a new set of items. This new

set of items plus completion items added by the Item Closure

operation corresponds to the next state in the LR recognizer

as reached by a transition on the grammar symbol. The items

for a new state before Item Closure is applied are called the

kernel items of the new states [7]. The LR(0) collection of

sets of items is formed by a process of applying Item Closure

to the initial items, and applying State Closure to this set to

yield the remaining sets of items. State Closure can be

implemented using an iterative algorithm based on a work

list. The algorithm is sketched out below. In this algorithm,
Start is the set of items for the start state of the recognizer;

W is the work list. On termination, K is a set that contains all

the recognizer's states.

State Closure:

Start:= f \the initial items" g;

W:= f Start g;

K:= f g;

while W is not empty doremove state S from W;

S:= Item Closure(S);

K: = K [f S g;

for each grammar symbol X do compute the kernel items, S0

= Kernel(S,X);if S0 is a new state then
W:= W[f S0g;

Since states are uniquely determined by their sets of kernel

items, the test to see if G is a new state does not require that

the Item Closure function be applied to G. The operation of

Item Closure can also be implemented by an iterative

algorithm based on a work list. In this case, the work list

holds individual items. The algorithm has a similar structure

to the one given above and therefore we omit giving its

details. Construction of the LR recognizer will generate three

sets of items (amongst about 20 other sets)that are related as

shown in Figure 1. But after we add the extra rule A→ B, the

corresponding states in the new LR automaton have sets of
items as shown in

Figure 2.

States 3 and 4 in the first LR recognizer have split to become

pairs of states in the second recognizer. Unfortunately, there

does not appear to be a simple test for determining when

such state splitting is required {or, indeed, for determining

what extra elements must be added to aset of items.

C. SLR (1) Look ahead Sets

The SLR (1) method uses a slightly more sophisticated

definition for the look-ahead sets. The sets are computed
using a function called FOLLOW. But computation of

FOLLOW is facilitated if the set of all null able symbols,

NULL, and a function called START are also computed.

The set of null able symbols is formally dened as

NULL = f X j X) g

Using NULL, we can determine the null ability of any

sentential form.

The set of nullable symbols after a rule addition is closely

related to that set beforehand.

Continuing with the convention that primes refer to the
grammar G0, the relationship is:

NULL0 = (NULL [fBjB)

Lg if 8 i (1 _ i _ n) :Ri 2 NULL

NULL otherwise where the rule L!R1 : : :Rn is added to the

grammar G to create G0. A simple iterative algorithm based

on a work list of non-terminal symbols that need to be re-

checked for null ability can be used to obtain NULL0 from

NULL efficiently.

The START function yields the set of starter symbols for a

grammar symbol. It is formally defined as

START(X) = f Y j X _) Y _ g
The FOLLOW function yields the set of symbols that may

legally follow a grammar symbol in a sentential form. It is

defined as

FOLLOW(X) = f Y j S _XY _ g

Methods for computing the START and FOLLOW functions

can be found in most bookson compiler construction. The

approach given here is based on [10]. The START function

International Journal For Technological Research In Engineering

Volume 2, Issue 2, October-2014 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2014.All rights reserved. 96

can be found by constructing the Immediate Starters relation

for the grammar and then forming the transitive closure of

that relation. If we choose to represent that relation by a

matrix IS, where IS[X; Y] = true means that symbol X has Y
as one of its immediate starters, and then the matrix is

defined as follows. An entry IS[X; Y] has the value true i_

the grammar contains a rule

X!Z1Z2 : : :ZkY _ such that 8i (1 _ i _ k) : Zi 2 NULL. All

other entries have the value false.

The transitive closure of IS is written as IS_ and is defined by

IS_[X;Z] = IS[X;Z] or (9Y1; Y2; :::Yn : IS[X; Y1]&IS[Y1;

Y2]&:::&IS[Yn; Z])

There are well-known algorithms for computing the transitive

closure of a relation [1, 22]. Efficient incremental algorithms

for transitive closure also exist [23] and would be particularly

suitable for use here. If we form the transitive closure IS_
using any of the standard methods, we have

START(X) = f Y j IS_[X; Y] = true and Y 2 VT g

Similarly, the FOLLOW function can be computed by first

constructing an Immediate Followers relation and then taking

its transitive closure. We define the IF matrix so that IF[X;

Y] has the value true if either the grammar contains a rule

Z!_Y Z1Z2 : : :ZkW_ and 8i (1 _ i _k) : Zi 2 NULL and X 2

START(W), or the grammar contains a rule X!_Y Z1Z2 : :

:Zk and 8i (1 _ i _ k) : Zi 2 NULL.

The transitive closure of IF can be computed, again using

standard techniques. We can then obtain FOLLOW from IF_
as follows.

FOLLOW(X) = f Y j IF_[X; Y] = true and Y 2 VT g

The formulation of START and FOLLOW in terms of IS_

and IF_ demonstrates the monotonic nature of the problem.

When a new rule L→R1R2 : : :Rn is added to the grammar,

we must change entries from false to true in the IS and IF

matrices. Changes in the reverse direction cannot occur. For

example, if n > 0, the entry IS[L;R1] would be set to true. In

turn, this implies changing entries from false to true in

transitive closure, IS_, and thus we would have computed

START0. Having computed START0, we can update IF. For
example, when we add the rule

L→ R1R2 : : :Rn

and where n > 1, the entries IF[R1; x] for x 2 START0(R2)

would be set to true.

An algorithm which works well is to update IS and IF as

suggested, and then use an iterative, worklist-based, approach

for updating the transitive closures.

Once we have computed the IF_ relation (and thus the

FOLLOW function), we can determine the look ahead sets.

According to the SLR (1) approach, we use:

LA (q; [A!_ _]) = FOLLOW(A)

And, if we define LA for non-reduce items in the same way
as for LR(0) parsers, conflict checkingcan also be performed

in the same way.

D. LALR (1) Lookahead Sets

Several methods for computing LALR (1) look ahead sets

have been published. Of these, an iterative algorithm due to

Aho and Ull man, described in [3, algorithm 4.13] and [8,

figure 6.25], appears to be best suited for conversion to use in

an incremental setting. We give a modified version of this

algorithm below. If the existence of some item, I1, in some

state implies the existence of another item, I2, either in the

same state (through the addition of completion items) or in
some other state (through the state completion process), then

the look ahead function applied to I2 yields a set which may

contain symbols determined by I1. This is called

spontaneous generation of look ahead symbols. In addition, it

is possible that the set of look ahead symbols for I2 must

include the entire set of look ahead symbols for I1. In this

case, the symbols are said to propagate from I1 to I2. The

rules for spontaneous generation of symbols and propagation

of symbols in the two possible settings are as follows:

Case 1:

Completion Items
Suppose that state q contains an item I1 where the marker

appears to the left of a non-terminal symbol. That is, I1 has

the form [A!_ _ X_]. The state must also contain one or more

completion items with the form [X! _]. Let I2 be one such

item. The symbols which can follow the right hand-side of I2

must include the symbols which follow X in item I1, and the

symbols which can follow X in that item must include

FIRST (_), where FIRST is defined below. In other words, a

2 FIRST (_) implies a 2 LA(q; I2). Inthe terminology of [3],

the symbol is spontaneously generated (by I1) and must

appearin the lookahead set of I2 [14].

Case 2:

Kernel Items

Suppose that state q1 contains an item I1 with the form [A!_

_ X_]. There must necessarily be another state q2 reached by

a transition on symbol X from q1, where q2 contains a kernel

item with the form [A!_X]. In such a case, if a 2 LA(q1; I1)

then a 2 LA(q2; I2). This is another example of propagation,

where symbol ‘a’ propagates from I1 to I2.

The FIRST function is a simple extension of START to the

domain of sentential forms.
FIRST(_) = f x j x_; x 2 VT g

An alternative de_nition which shows how to derive FIRST

from START is

FIRST(X1 : : :Xk) = (START(X1) [FIRST(X2 : : :Xk) if

X1 2 NULL

START(X1) otherwise FIRST(_) = ;

A simple algorithm to determine the look ahead sets can start

by initializing all look ahead sets to empty. Then it can make

repeated passes over all items in all states adding

spontaneously generated symbols and propagated symbols to

the sets. This iterative procedure can halt when a pass fails to

add any new symbols to any set. (A faster version, and the
method used in ilalr, would use a work list so that only items

whose look ahead sets have changed participate in the next

pass. Entries in the work list consist of < state; item > pairs.)

V. WORST CASE COMPLEXITY

A natural question to ask is how long can it take to update

the parser tables after the addition or deletion of one

production rule using the algorithms described in this

International Journal For Technological Research In Engineering

Volume 2, Issue 2, October-2014 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2014.All rights reserved. 97

paper?" We will demonstrate that the problem has

exponential worst-case time complexity and therefore no

algorithm that is efficient in the worst-case can exist. The

demonstration is based on the following grammar1 which
contains 2n + 2 productions.

S0 → a S0 j b S0

S0 → c S1

S1 → a S2 j b S2

S2 → a S3 j b S3

S3 → a S4 j b S4

: : :

Sn → a Sn j b Sn

Sn → d

The LR(0) construction algorithm applied to this grammar

generates a recognizer with 4n + 6states.

Suppose, now, that the production rule S0 → a S1is added to
the grammar. The extra rule causes the number of states in

the LR(0) recognizer to be increased to 2n + 4n + 6 states.

Therefore, the unfortunate implication is that any algorithm

for incrementally updating the LR parse tables must be

prepared to create an exponential number of states when

processing a single rule addition. Therefore both the time and

space cost are exponential in the size of the grammar. (The

amended grammar also illustrates that even a non-

incremental LR (0) parser generator has exponential worst-

case time and space complexity.) The example grammar is

constructed in such a way that it illustrates another interesting
property. Suppose that we add yet one more production

S0 → b S1

Surprisingly, this addition causes the number of states in the

LR(0) recognizer to be reduced to6n +7. Now, consider what

happens if this last rule is deleted. We would observe the

number of LR (0) states to increase from 6n+7 to 2n+4n+6.

In other words, this example demonstrates that an

incremental algorithm for rule deletion must also have

exponential time and space complexity.

The grammar was constructed by Alan Demers.

[18].
GRAMMAR

PL/0 Pascal XPL C Oberon Ada

Total CPU time 0.3 2.0 2.7 10.9 2.1 23.6

Average time per rule 0.005 0.009 0.02 0.04 0.008 0.05

Maximum time for one rule 0.02 0.05 0.16 3.72 0.04 0.8

Total CPU time used by yacc 0.3 1.2 1.0 3.8 1.4 11.5

VI. CONCLUSION

Practical algorithms for incremental analysis of grammars

and for incremental generation of LR(0), SLR(1) and

LALR(1) recognizers have been presented. Compiler

construction tools based on these algorithms would help
compiler writers develop suitable grammars and might also

permit the incremental construction of compilers. Although

the worst-case execution times of the algorithms are poor,

practical experience shows that they work well. A possibility

that might reduce expected execution time requirements even

further would be to incorporate an efficient incremental

transitive closure algorithm [23]. There is, of course, no hope

for such an algorithm improving the worst-case time

complexity of the problem. The transitive closure algorithms

are efficient only for the case when a single edge is added or

deleted from a graph. As section 6 in this paper

demonstrates, the number of edges that must be added or
deleted from the state graph of the LR(0) recognizer can be

exponential in the size of the grammar. It would be nice to

give a proper comparison between the speeds of our

implementation and Fischer's implementation [9], but only a

meaningless comparison seems possible. Using our

implementation, the time needed to process the 109

productions of the XPL grammar is 2.7 CPU seconds on a

SUN SparcStation I workstation, for an average of 0.024

CPU seconds per production. Fischer's implementation

applied to the same grammar used an average of 1.8 CPU

seconds per production on a Siemens 7.748 computer (which

he describes as being nearly half as fast as an IBM 370/158).

 REFERENCES

[1] A.V. Aho, J. Hopcroft and J.D. Ullman.The Design

and Analysis of Computer Algorithms. Addison-

Wesley, 1974. 22

[2] Aho, A.V., Johnson, S.C. LR Parsing. ACM

Computing Surveys, vol. 6, no. 2, pp. 99-124, 1974.

[3] Aho, A.V., Sethi, R., Ullman, J.D. Compilers:

Principles, Techniques and Tools. Addison-

Wesley, Reading, MA (1986).

[4] Aho, A.V., Ullman, J.D. The Theory of Parsing,
Translation and Compiling; vol. 1, Parsing. Prentice

Hall, Englewood Cli_s, NJ (1972).

[5] Dencker, P., D• urre, K., Heuft, J. Optimization of

Parser Tables for Portable Compilers. ACM Trans.

on Prog. Lang. and Sys., 6,4, 546-572 (1984).

[6] DeRemer, F., Pennello, T. E_cient Computation of

LALR (1) Look-Ahead Sets. ACM Trans. onProg.

Lang. and Sys., 4,4, 615-649 (1982).

[7] Ehre, R. Die Generierungeines Multiple-Entry

Parsers und eininkrementeller LALR (1)- Parser

generator. Diploma thesis, Department of
Mathematics and Computer Science, University of

Saarbr• ucken, Federal Republic of Germany

(1986).

[8] Fischer, C.N., LeBlanc Jr., R.J. Crafting a

Compiler. Benjamin/Cummings, Menlo Park, CA

(1988).

[9] Fischer, G. Incremental LR(1) Parser Construction

as an Aid to Syntactical Extensibility. PhD

Dissertation, Tech. Report 102, Department of

Computer Science, University of Dortmund,

Federal Republic of Germany (1980).

[10] Gri_ths, M. LL(1) Grammars and Analysers in
Compiler Construction: An Advanced Course {

second edition, (Lecture Notes in Computer Science

vol. 21), F.L. Bauer and J. Eickel, Eds., Springer-

Verlag, Berlin (1976).

[11] Heering, J., Klint, P., Rekers, J. Incremental

Generation of Parsers. Report CS-R8822, Centre for

Mathematics and Computer Science, Amsterdam

(1988).

International Journal For Technological Research In Engineering

Volume 2, Issue 2, October-2014 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2014.All rights reserved. 98

[12] Heering, J., Klint, P., Rekers, J. Incremental

Generation of Parsers. Proceedings of Sigplan '89

Conference on Programming Language Design and

Implementation. ACM Sigplan Notices 24, 7, 179-
191 (1989).

[13] Heindel, L.E., Roberto, J.T. LANGPAK {An

Interactive Language Design System. American

Elsevier, New York, NY (1979).

[14] Horspool, R.N., Levy, M.R. MkScan{An

Interactive Scanner Generator. Software {Pract.

&Exper.17, 6, 369-378 (1987).

[15] Johnson, S.C. YACC { Yet Another Compiler-

Compiler. Bell Laboratories, Murray Hill, NJ, Rep.

CSTR 32 (1974).

[16] Kam, J.B., Ullman, J.D. Monotone Data Flow

Analysis Frameworks. ActaInformatica 7, 3, 305-
318 (1977).

[17] Lesk, M.E., Schmidt, E. LEX { A Lexical Analyzer

Generator. Bell Laboratories, Murray Hill, NJ, Rep.

CSTR 39 (1975). 23

[18] Pager, D. A Practical General Method for

Constructing LR(k) Parsers. ActaInformatica 9249-

268 (1977).

[19]] Spector, D. E_cient Full LR(1) Parser Generation.

ACM Sigplan Notices 23, 12 143-150 (1988).

[20] Tremblay, J.-P., Sorenson, P.G. The Theory and

Practice of Compiler Writing. McGraw-Hill, New
York, NY (1985).

[21] Vidart, J. Extensions Syntactiquesdansune Context

eLL(1). Doctoral dissertation, University of

Grenoble (1974).

[22] Warshall, S. A Theorem on Boolean Matrices. J.

ACM 9,1, 11-12 (1962).

[23] Yellin, D. A Dynamic Transitive Closure

Algorithm. IBM T.J. Watson Research Center,

Yorktown Heights, NY, report RC 13535 (1988).

