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Abstract: Frequent pattern mining is the widely researched 

field in data mining because of its importance in many real 

life applications. Many algorithms are used to mine 

frequent patterns which give different performance on 

different datasets. Apriori, Eclat and FP Growth are the 

initial basic algorithm used for frequent pattern mining. 

CATS Tree extends the idea of FP-Tree to improve storage 

compression and allow frequent pattern mining without 

generation of candidate item sets. It allows mining only 

through a single pass over the database. The efficiency of 

Apriori, FP-Growth, and CATS Tree for incremental 

mining is very poor. The implemented CATSIM Tree uses 

more memory compared to Apriori, FP-Growth and CATS 

Tree, but with advancement in technology, is not a major 

concern. In this work CATSIM Tree with modifications in 

CATS Tree is implemented to support incremental mining 

with better results. 

Keywords: Frequent itemset: Pattern discovery: Tree 

structure. 

 

I. INTRODUCTION 

      Data mining has long been an active area of research in 
databases. A database is a systematically arranged collection 

of data, so that it can be retrieved and manipulated easily at a 

later time. There are different kinds of database, like active 

database, cloud database, embedded database and 

transactional database etc, but in this paper the researcher 

deals with transactional database only. A transactional 

database is a database in which there is no auto commit. Most 

modern relational database are the transactional database [3]. 

A database layout tells how data is represented. There are 

two layouts which are in common use, horizontal layout and 

the vertical layout. It is a divide and conquers mechanism 
which reduces the size of database recursively by considering 

only the longest pattern. A frequent pattern is a pattern which 

occurs in comparatively more transactions. A frequent item 

set is an item set whose support is greater than some user-

specified minimum support. The presented paper is organized 

in five sections: the first section contains the introduction; the 

second section presents a brief description of the three 

frequent pattern mining algorithms namely Apriori, Eclat, FP 

Growth, CATS, CATS-FELINE, FPM and CATS SIM tree. 

The third section gives the methodology used. The fourth 

section presents a comparative analysis of the algorithms 

used under varying conditions. Fifth section gives the 
conclusion and in the last references is listed. 

 

 

 

 

II. FREQUENT PATTERN MINING ALGORITHMS 

Now the researcher elaborates the various frequent itemset 

mining algorithms.  

 

A. Apriori Algorithm  

Apriori is the very first algorithm for mining frequent 

patterns. It was given by R Agarwal and R Srikant in 1994 

[5].It works on horizontal layout based database. It is based 

on Boolean association rules which uses generate and test 
approach. It uses BFS (breadth first search). Apriori uses 

frequent k itemsets to find a bigger itemset of k+1 item. The 

calculation of frequency of an item is done by counting it‟s 

occurrence in all transactions [6]. All infrequent items are 

dropped. Apriori property: All subsets of a frequent itemsets 

which are non empty are also frequent. Apriori follows two 

steps approach: In the first step it joins two itemsets which 

contain k-1 common items in kth pass. The first pass starts 

from from the single item; the resulting set is called the 

candidate set Ck. In the second step the  algorithm  counts  

the  occurrence  of  each  candidate  set  and prune  all  

infrequent  itemsets.  The algorithm ends when no further 
extension found.   

 

B. Eclat Algorithm 

Eclat is a vertical database layout algorithm used for mining 

frequent itemsets. It is based on depth first search algorithm. 

In the first step the data is represented in a bit matrix form.  

If the item is bought in a particular transaction the bit is set 

to one else to zero. After that a prefix tree needs to be 

constructed. To find the  first  item  for  the  prefix  tree  the  

algorithm  uses  the intersection of the first row with all other 

rows, and to create the second child the intersection of the 
second row is taken with the rows  following  it  [4].  In  the  

similar  way  all  other  items  are found  and  the  prefix  tree  

get  constructed.  Infrequent rows are discarded from further 

calculations. To mine frequent itemsets the depth first search 

algorithm is applied to prefix tree with backtracking.  

Frequent patterns are stored in a bit matrix structure. Eclat is 

memory efficient because it uses prefix tree. The algorithm 

has good scalability due to the compact representation.   

 

C. FP Growth Algorithm 

Frequent  pattern  growth  also  labelled  as  FP growth  is  a 

tree based  algorithm  to mine  frequent  patterns  in database  
the  idea was given by (han et. al. 2000) [10]. It is applicable 

to projected type database.  It uses divide and conquer 

method [7]. In it no candidate frequent itemset is needed 
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rather frequent patterns are mined from FP tree. In the first 

step a list of frequent itemset is generated and sorted in their 

decreasing support order. This list is represented by a 

structure called node. Each  node  in  the  FP tree,  other  than 
the  root  node,  will  contain  the  item  name, support count, 

and a pointer to link to a node in the tree that has the  same 

item name  [6]. These nodes are used to create the FP tree.  

Common prefixes can be shared during FP tree construction. 

The paths  from  root  to  leaf nodes are arranged  in non  

increasing  order  of  their  support.  Once the FP tree is 

constructed then frequent patterns are extracted from the FP 

tree starting from the leaf nodes.  Each prefix path subtree is 

processed recursively to mine frequent itemsets. FP Growth 

takes least memory because of projected layout and is storage 

efficient. A variant of FP tree is conditional FP tree that 

would be built  if we consider  transactions containing a 
particular  itemset and  then  removing  that  itemset  from  

all  transactions. Another variant is parallel FP growth (PFP) 

that is proposed to parallelize the FP tree on distributed 

machines [8]. FP Growth is improved using prefix-tree-

structure, Grahne and Zhu [9]. 

 

D. CATS Tree   

In the present study, we have developed a novel data 

structure, CATS Tree, an extension of FP-Tree [3]. 

Researchers have proposed to use tree structure in data 

mining [3]. However, they are not suitable for interactive 
frequent pattern mining. CATS Tree is a prefix tree and it 

contains all elements of FP-Tree including the header, the 

item links etc. Paths from the root to the leaves in CATS Tree 

represent sets of transactions. We use the database in Table 1 

to illustrate the construction of a CATS Tree. Initially, the 

CATS Tree is empty. Transaction 1 is added as it is. 

Transaction 2 is added, common items, F, A, C, is extracted 

from Transaction 2 and is merged with the existing tree. 

Although item D is not contained in Transaction 2, common 

items could be found underneath node D. Item M is found to 

be common. However, Transaction 2 cannot be merged 
directly at node M because it would violate the structure of 

CATS tree that the frequency of a parent node must be 

greater than the sum of its children‟s frequencies. Node M of 

CATS Tree is swapped in front of node D and it is merged 

with the transaction. After that, there is no more common 

item. The remaining portion of Transaction 2 is added to 

node M. 

Table 1: Transaction Data [13]. 

TID Original Transaction 

1 A, F, C, D, G, I, B, P 

2 A, B, C, F, L, M, O 

3 B, A, H, J, O 

4 B, C, K, S, P 

5 A, F, C, E, L, P, M, N 

Transaction 3 is added. Item F of Transaction 3 is merged. 

Since the frequency of node A is the same as that of node F, 

The search for other possible merge nodes continues along 

the branch. It passes through node A, C, and M and finally, 

reaches node B. Even though Transaction 3 also contains an 
item B, but the frequency of node B is smaller than that of 

node M, the remaining of the transaction is inserted as a new 

branch at node F. When Transaction 4 is added, there is no 

common item. Transaction 4 is added as it is. In Figure 2, 

Transaction 5 is added; F, A, C, and M are merged. The 
search for common items continues along the path. Item P is 

common in both the tree path and Transaction 5. This 

triggers swapping of node P to the front of node D. After 

item P is merged, there is no more common item. The 

remainders of Transaction 5 are inserted as a new branch at 

node P. Finally we get answer in figure 1. 

 

All CATS Trees have the following properties:  

1) The compactness of CATS Tree measures how many 

transactions are sharing a node. Compactness decreases as it 

is getting away from the root. This is the result of branches 

being arranged in descending order.  
2) No item of the same kind could appear on the lower right 

hand side of another item. If there were items of the same 

kind on the right hand side, they should have been merged 

with the node on the left to increase compression. Any items 

on the lower right hand side can be switched to the same 

level as the item, split nodes as required if switching nodes 

violates the structure of CATS Tree [14]. 

 

E. CATS-FELINE and FPM 

In the mining process with a CATS-tree, the CATS-FELINE 

algorithm builds a conditional condensed CATS-tree for 
each frequent item p by gathering all transactions that 

contain p. A conditional condensed CATS-tree  is  one  in  

which  all  infrequent  items  are  removed  and  is  different  

from  a conditional FP-tree.  In  order  to  ensure  that  all  

frequent  patterns  are  captured  by  CATS-FELINE, it has 

to traverse both up and down the CATS-tree. 

 

CATS-FELINE the overall mining process proceeds in three 

phases:  

Step 1: Convert  the CATS  tree  generated  from  a  database  

scan  into  a  condensed  tree with nodes having the 
frequency count less than the minimum support removed. 

Step 2:  Construct conditional condensed CATS-trees (also 

known as alpha-trees) for items in the header table with 

frequency counts greater than the minimum support. 

Step 3: For each alpha-tree generated in step 2, item sets with 

at least minimum support are mined [13]. 

FPM algorithm differs from CATS-FELINE in step 2.  

Instead  of  recursively constructing  alpha  trees  for each  

frequent  item  set, FPM  generates  a  single  conditional  

condensed  tree  for  each  item  using  a  pre-order  traversal  

of  the  original CATS-tree. To illustrate the basic idea 

behind the algorithm, we will use the database shown  in 
Table 1  as  an example and  the original CATS-tree  

constructed  from  a  database  scan  and  its  condensed one 

will look like the following (assuming minimum support of 

3) [3]: table 1. This condensed tree, a header table containing 

all the frequency counts for each item, and the required 

minimum support will be the actual input to our algorithm 

called FPM (Frequent Patterns Merge). Given the above 

condensed tree, FPM starts building an alpha tree for each 
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frequent item as follows: Since C is an item with the highest 

frequency in the header table, FPM constructs an alpha tree 

for c first. By traversing the leftmost path of the tree of 

Figure 1 in pre order, it will construct a partial tree Figure 2 
consisting of a single path C-F-A-M. Note that the order of 

nodes and the frequency count of some node have been 

slightly changed from Figure 1 to Figure 2.  The  node  for  

item  c  has  been  moved  to  the  root. Because it is the 

current alpha item under consideration and the frequency of 

node F has been changed to 3 from 4 because the branch F-B 

in Figure 1 does not contain item C and thus the frequency of 

F has been decremented by 1. 

 
Figure 1: CATS-Tree and its condensed one [13] 

 

After C-F-A-M has been added to the current   alpha-tree, the 

node for „P: 2‟ will be encountered in the preorder traversal. 

In this case, P is not frequent and there is no node for P in the 

current alpha tree. Then, a node is created for „P: 2‟ and will 

be inserted to the current alpha tree as a child of the root. 

This is the major difference between the CATS-FELINE and 

FPM.  FPM attempts  to  reduce  the  number  of  nodes  in  

the  alpha  tree  by condensing  even  infrequent  items.  The 

same process applies to node „B: 1‟ and Figure 3 shows the 
resulting alpha tree after the left subtree of the original 

condensed tree has been traversed. 

 
Figure 2: Initial Round of Constructing Alpha Tree for c [13] 

 
Figure 3: next round of constructing alpha tree for c [13] 

Now, the right sub tree of the input tree is to be traversed. It 

has one node for C and thus the root count of the current 

alpha tree should be incremented by 1, making it 4. And also 

the counts of node B and P should also be incremented by 1 

respectively. Figure 4 shows the final alpha tree constructed 

for item C: 

 

F. CATSIM Tree 
In the CATS Tree, all the items are stored as they are 

appearing in the sequence of particular transaction. The 

sequence may be changed if any of the lower leaf appears 

more time than the upper leaf. The procedure is continuous 

up to the last transaction of the database. So, in CATS Tree 

we cannot predict which item will remain on top of the tree 

up to 

 
Figure 4: Final Round of Constructing Alpha Tree for c [13] 

 

The last transaction. While in the CATSIM Tree all the items 

are stored either in the alphabetical or any other order as 

related with items. CATSIM Tree satisfies the following 
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properties.  

1.  Items ordering is unaffected by the changes in frequency 

caused by incremental updates.  

2.  Node frequency in the CATSIM tree is at least as high as 
the sum of frequencies of its children [12].  

 
 

 
Figure 5: CATSIM Tree construction [12] 

 

III. COMPARATIVE ANALYSIS 

Figure 6, shows the comparison for the six algorithms for 

incremental database. The Apriori algorithm requires the 

maximum execution time. The FP-Growth requires less time 

compare to Apriori. CATS FELINE is better than CATS and 

FPM is also better than CATS FELINE.  So for incremental 

size of the database, CATSIM Tree is better than any of the 

existing algorithms.  

 
Figure 6: Incremental size of Database vs. Runtime [12] 

 

Experiment for the incremental size of database and memory 

usage is shown in figure 7. The Apriori, FP-Growth, and 

CATS are working on the principle of regeneration of the 
tree, so these three algorithms use the same memory that had 

been used previously to construct the tree. While in the case 

of CATSIM Tree, it requires more memory in the normal 

static database conditions, so also in the incremental size of 

the database it requires more memory. 

 
Figure 7: Incremental size of Database Vs Memory 

Usage [12] 

 

IV. CONCLUSION 

Frequent pattern mining is the most important step in 

association rules which finally helps us in many applications. 

In this paper the researcher surveyed the pattern mining 

algorithms. Apriori  algorithm uses  join and  prune  method, 

and  major  weakness algorithm   is  producing  large number  
of  candidate  itemsets  and  large  number  of  database 

scans which is equal to maximum length of frequent itemset 

[5].  A true reason of Apriori failure is it lacks efficient 

processing method on database and expensive [7].  FP 

Growth is the best among the three algorithms and is thus 

most scalable. Eclat performs poorer than FP Growth and the 

Apriori performs the worst. CATS Tree algorithms allows 

single pass frequent pattern mining. But it require more 

memory so to overcome this problem CATS-FELINE is 

introduce and then FPM. But the tree size can be exponential 
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for the case of dense data, so there is a need in the 

improvement in the tree structure which reduces the tree size 

and make it scalable to handle large database which is highly 

incremental in nature So, attempt may be made to use 
concept of CATSIM for heterogeneous databases. In the 

future improvements must be taken care to enhance the 

performance of Algorithms for better layout to store the data.   
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