
International Journal For Technological Research In Engineering

Volume 4, Issue 1, September-2016 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2016.All rights reserved. 139

SOFTWARE ARCHITECTURE’S ROLE IN BRIDGING BETWEEN

REQUIREMENTS AND IMPLEMENTATION

Sagar Autade
1
, Rahul Takawale

2
, Hema Gaikwad

3

1,2
MBA-IT, SICSR,

2
Assoc. Professor

Affiliated to Symbiosis International University (SIU), Pune, Maharashtra, India

Abstract: A model-based system development cycle involves

two semantically distinct aspects: the requirements

specification and the implementation model. Due to the

conceptual and semantic differences between these two

major system lifecycle stages, the transition from

requirements to implementation is inherently a non-

coherent process. The processes of requirement engineering

and software design take place during a software

development. Business processes, goals, organizational

models of company can be considered for specification of

software requirements. In iterative software development,

which is more popular nowadays, requirement engineering

and software design processes occur on different stages

during the project increasing the complexity of the projects.

Thus, software design is constantly refined and minor

improvements are made in it. Software architecture is a

promising approach to controlling software complexity.

Software architecture research is directed at reducing costs

of developing applications and increasing the potential for

commonality between different members of a closely related

product family.

I. INTRODUCTION

Software Architectures enable developers to centre on the big

picture in developing a system and to adopt a component-

based development philosophy instead of always building a

system from scratch. Architectures do this by making a

software system‟s structure precise, isolating the computation

of components from their interactions in a system, and

providing a high-level model of a system that can be

managed and evaluated before any changes are effected in an

actual implementation. In most cases, today, there‟s no

documented software architecture to support the
requirements and help in the implementation. The

requirements gathered at the inception of the project are

mostly general descriptions of what the customers expect

from the software. These „general descriptions‟ of the

requirements are difficult to understand and implement by

the development team due to lack of structure to the

requirements. In order to provide a sound structure and

meaning to the requirements, software architecture diagrams

are designed and modelled to give the requirements some

practical value.

II. WHAT MAKES A GOOD ARCHITECTURE?
There is no inherently “good” or “bad” software architecture.

A good architecture is one that meets the requirements set out

for it. The characteristics that make for a good architecture

are:

 Highly modular

 Avoids duplication

 Well described

 Runs and passes all tests and acceptance criteria.

Need of good architecture

Software architecture is a “strategic model” - the generic

rules of building and organizing your system, or its

philosophy. Architecture is something you cannot “re-

factor”, and you‟ll end up having to rewrite the system from
scratch if it‟s bad. A strong software architecture can reduce

the cost of development in the long run, ensuring your

system won‟t crack at the joints when you add the next

portion of the requirements. In short, “architecture” is

thinking in advance. Development of “good” software

architecture takes time and can be costly. But it pays off in

the long run

The architectural requirements of the system are such that

they -

 Allow understanding of and reasoning about a
system at a level of abstraction above the source

code and closer to the stakeholder‟s mental models

of the system.

 Narrow the gap between system requirements,

which exist in the “problem” space, and software

designs, which are in the “solution” space.

 Support reuse and families of applications as averse

to custom and “one of a kind” solutions.

 Enable codification of successful design and

evolution properties from traditional projects.

 Allow upstream analysis to correct errors early and
reduce costs associated with those errors.

 Allow reformability of software both before and

during runtime.

 Allow components of differing granularities,

enforces in different programming languages.

 Support distributed and heterogeneous

environments with numerous address spaces, strings

of authority, and operating system processes.

III. ARCHITECTURE‟S ROLE IN REQUIREMENTS

Proper software architecture is the best solution that
simultaneously satisfies business requirements, business

constraints (including cost), and technical requirements. To

achieve the right harmony between these contesting

concerns, the architect must have a good perception of 4 key

areas:

International Journal For Technological Research In Engineering

Volume 4, Issue 1, September-2016 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2016.All rights reserved. 140

1. The business – The company‟s mission statement,

philosophy, values, capabilities, business strategies,

and activities.

2. Processes and existing computer systems - The way
in which end-users accomplish their work and the

hardware/software that they are currently using.

3. Project constraints - What the business expects the

software to accomplish, hardware/software that the

business is locked into using, timeline, and budget

of the project.

4. Technology Suitability, cost, and compatibility with

existing systems

A well thought-out architecture must consider these vital

principles:

 Build to change instead of build to last

 Understand the end user needs and the domain prior

to designing the components

 Identify sub-systems in your product and study the

layers and components to abstract them and

determine the crucial interfaces

 Use an incremental and iterative approach to

designing the architecture

 Learn from history, document your decisions and

identify and reduce major risks

 Do not under-invest in architecture

IV. CHALLENGES TO PROPER ARCHITECTURE

In pursuing this hybrid discipline that melds business,

technical, and people skills, the software architect is often

called upon to perform a delicate high wire act. Here are

some of the challenges that the architect must overcome to

protect the integrity of the architecture and produce great

software:

Politics: The software architect is a key interface between

business and IT, and therefore must balance the storms that

brew along that front. The architect must act as a mediator,

helping to reach a consensus on what needs to be

accomplished and how it should be done. Some
compromises, while necessary, are problematic from an

architectural standpoint.

Out-of-date standards: Existing software components might

conform to old standards, making it difficult for an architect

to integrate them into a new system.

Exclusive focus on technology: If an architect compromises

business needs to achieve a specific technical outcome, the

resulting architecture will be inappropriate and ineffective.

Poor understanding of the business goals or domain: The

architecture cannot succeed unless the architect really

understands the business that must be served by the software.

Lack of understanding by the business: A business that does

not understand the value of proper software architecture will

push for shortcuts at the planning stage, which will lead to

“accidental” architecture and the „shabby‟ software that goes

with it.

Poor implementation: The most brilliant design is useless

without the ability to act on it. The architect must have the

skills, support, and resources to shepherd a software project

from requirements to successful release.

V. ARCHITECTURE‟S ROLE IN IMPLEMENTATION

Implementation is the one aspect of software engineering

that cannot be considered as optional. Architecture-based

development provides a unique twist on the typical problem-

it becomes, in a large measure, a mapping activity.

Maintaining and mapping means ensuring that our

architectural intent is reflected in our constructed systems.

Components and Connectors

 Partitions of application calculation and
communication service.

 Modules, packages, libraries, classes, explicit

components or connectors in middleware.

 Interfaces.

 Programming-language level interfaces are

common.

 State machines or protocols are more difficult to

map.

Configurations:

 Interconnections, references, or dependencies

between functional segregation

 May be implicit in the implementation

 May be externally determined through a MIL and

set up through middleware

 They may involve use of reflection

Design rationale:

 Often does not appear directly in application

 Retained in remarks and other documentation

 Architectures inevitably change after

implementation begins

For maintenance objectives

 Because of time burdens

 Because of new information

 Implementations can lead to the rise of new

information

 We learn more about the feasibility of our designs

when we implement

 We also learn how to optimize them

 Keeping the two in sync is a difficult technical and

managerial problem

 Places where strong mappings do not exist are often

the first to diverge

 One-way mappings are easier

 Must be able to realize the impact on

implementation for an architectural design selection

or modification

 Two-way mappings require more intuition

 Must understand how a change in the

implementation affects architecture-level design

decisions

One strategy: limit changes

 If all system modifications must be done to the

International Journal For Technological Research In Engineering

Volume 4, Issue 1, September-2016 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2016.All rights reserved. 141

architecture first, only one-way mappings are

required

 Works very well if a myriad of generative

technologies in use

 Usually difficult to regulate in practice; introduces

process delays and limits implementation freedom

Alternatives:

 Allow modifications in either architecture or

implementation

 Depends on round-trip mappings and maintenance

strategies

 Can be serviced (to an extent) with automated tools

VI. CONCLUSION

With the advent of new technologies, the user interface

portion of interactive systems is becoming increasingly large

and complex. Software architecture and architectural

modelling is, therefore, becoming a central problem for large

complex systems. In addition, software architecture is the

activity at the turning point between two worlds: software

requirements and software implementation. Because of its

interlinking location, software architecture must take into

account the properties of both these worlds. In this paper, we
have discussed the role of software architecture in the

requirements and implementation phases of software

development life cycle.

 REFERENCES

[1] Software Architecture and Component

Technologies: Bridging the Gap Information and

Computer Science University of California, Irvine

Irvine, CA 92697-3425 USA

{peymano,neno,taylor,dsr}@ics.uci.edu

http://www.ics.uci.edu/pub/arch/ Peyman Oreizy

Nenad Medvidovic Richard N. Taylor David S.
Rosenblum

[2] McGovern, James, Scott W. Ambler, Michael E.

Stevens, James Linn, Vikas Sharan, and Elias K. Jo.

A Practical Guide to Enterprise Architecture, (Upper

Saddle River, New Jersey: Pearson Education,

2004), 37.

[3] Jalote, Pankaj. An Integrated Approach to Software

Engineering (Third Edition), (New York: Springer

Science + Business Media, 2005), 162-163.

[4] Ambler, Scott W. The Object Primer: Agile Model-

driven Development with UML 2.0 (Third Edition),
(New York: Cambridge University Press, 2004),

278.

[5] Pfleeger, Shari Lawrence, and Joanne M. Atlee.

Software Engineering: Theory and Practice (Fourth

Edition), (Upper Saddle River, New Jersey: Pearson

Higher Education, 2010), 236.

