
International Journal For Technological Research In Engineering

Volume 4, Issue 2, October-2016 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2016.All rights reserved. 304

DEVELOPING A GENERIC APPROACH TO MAKE EASY THE

DEVELOPER TASK USING MULTIPLE DATA STORES

Chimbili Pallavi
1
, G. S. Udaya Kiran Babu

2

1
PG Scholar,

2
Associate Professor

Bheema Institute of Technology and Science, Adoni, Kurnool (Dt), AP, India.

ABSTRACT: Nowadays, either relational DBMSs or

NoSQL DBMSs are on demand and the application

developer must be familiar with the proprietary API of each

type of DBMS. However, these APIs are heterogeneous on

different levels: API level and Typing level. In order to

satisfy different storage requirements, cloud applications

usually need to access and interact with different relational

data stores having heterogeneous APIs. This APIs

heterogeneity induces two main problems. First it ties cloud

applications to specific data stores restricting therefore their

migration. Second, it requires developers to be familiar with

different APIs. For this reason, in this paper we propose an

integrated set of models, algorithms as well as requirements

aiming at relieving developers task for developing,

deploying as well as migrating multiple data stores

applications in cloud. Our proposed scheme concentrates

essentially on 3 points. First, we provide a unifying data

model utilized by applications builders to keep in touch with

heterogeneous relational data stores. Based on that, they

express queries making use of OPEN-PaaS-DataBase API

(ODBAPI), targeted relaxation API allowing programmers

to write down their applications code independently of the

target data stores. 2nd, we presents Virtual Data Stores,

which act as a mediator and communicate with integrated

data stores wrapped through ODBAPI. Ultimately, we

present a declarative technique that makes it possible for to

lighten the burden of the tedious and non-standard tasks.

I. INTRODUCTION

The success of the Database-as-a-service model has

introduced a huge style of business and study approaches.

Although many had been broadly studied, there is an absence

of taxonomy. In the path of this work, we will distinguish
between managed database offerings, proprietary database

offerings and Backend-as-a-services (BaaS). In a managed

database carrier a DBaaS supplier presents a cloud-deployed

DBMS as well as automates operational tasks comparable to

provisioning, multi-tenancy, backups, safety, entry

manipulate, flexibility, scaling, performance tuning as well as

replication. Proprietary database offerings build on recently

designed database techniques (e.g. Google DataStore situated

on Megastore) or combine exceptional databases to a

polyglot persistence atmosphere to present them by way of

provider-targeted protocols and APIs. The Backend-as-a-

provider model enhances the DBaaS model by using utilizing
including abstractions for backend concerns of mobile

purposes and internet sites (e.g. Authentication, push

notifications, data justification as well as property). DBaaS

methods fluctuate inside the degree to which they furnish

automation of operational responsibilities, the underlying

expertise store, pricing gadgets, Server Level Agreements

(SLAs), multi-tenancy techniques and, most significantly,

their interfaces. Whilst Proprietary database choices offer

supplier-unique interfaces, managed database choices present

database-particular protocols that were not planned for cloud

environments. As described by way of Fowler et al. This

encompasses NoSQL databases that have a (possibly

denormalized) combination as their primary unit of entry:

rows in enormous-column and file stores, documents in file
stores and key-value pairs in key-value stores. This aligns

well with the valueless resource-oriented model of

amusement. The key assertion and inspiration for this work

is that mixture-oriented DBaaS programs may also be greatly

elevated with the aid of supplying them by way of a single

unified and scalable relaxation API. That is appealing as

consumers can also be reused, understanding items be shared

and applications be migrated. Customers drive into the

computing Cloud with data as well as applications. Some

Cloud programming models must be proposed for customers

to adapt to the Cloud infrastructure. For the ease and

convenient entry of Cloud offerings, the Cloud programming
model, nonetheless, should not be too complicated or too

progressive for end customers. The MapReduce is a

programming model and a related implementation for

processing and producing tremendous data units diagonally

the Google worldwide infrastructures. The MapReduce

model first of all includes applying a “map” operation to a

few data files – a set of key/value pairs, after which

techniques a “reduce” operation to the entire values that,

shared the equal key. There have been large changes taking

situation in predicament to internet progress, not too long

ago most of structured databases are converted to
unstructured databases. The cause behind this is, due to the

innovation and use of many social media. This data which is

extracting from one of a kind sources are in special type.

They are stored in specific varieties of databases. Gaining

access to these databases is way intricate given that the

developer has got to know all these databases and their exact

API. The complexity rises as the connectivity is made to

distinct database. For example, to connecting a single

database the developer is required to load its driver

separately and select a correct API after which participate in

the one-of-a-kind operation. Within the context to the

heterogeneity of API, the proposed approach implemented a
fashioned interface which is makes use of RESTful API to

attach one-of-a-kind structured as well as unstructured data

stores in cloud. On this procedure the interface helps to

connect to the server and makes it possible for performing

International Journal For Technological Research In Engineering

Volume 4, Issue 2, October-2016 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2016.All rights reserved. 305

the unique operations on the structured and unstructured

databases. An API helps to realize a proper database as per

developer’s specification and makes connectivity to it. The

distinct operations to the databases are carried out by means
of the API. In this method the developer has to specify the

operations and the execution is performed as per

specification. The procedure makes use of one of kind

databases like Mongo database, couch database that are

unstructured databases. It will necessary for developer to

access such new science without understanding their

distinctive API which in flip will precious to control the

development burden.

II. RELATED WORK

Dr Elaine Shi described a few enabling technologies closer to

this vision. Principally, she told about 1) preserve users' data
against probably compromised purposes; 2) the right way to

safeguard customers' data against a probably compromised

computation supplier; and three) the way to preserve users'

data in opposition to a potentially compromised storage

provider. She instructed about our ongoing effort at

integrating these technologies to provide a cloud

infrastructure which provides data protection at the platform

level. In this method, users can advantage from the rich cloud

purposes without stressful in regards to the privacy of their

data; and utility developers can focus on setting up

performance at the same time offloading the burden of
offering safety and privacy to the cloud platform.

Researchers have realized that supporting allotted

transactions does no longer enable scalable and available

designs. Therefore to satisfy the scalability requisites internet

functions, designers have scarified the capacity to support

dispensed transactions. This resulted in the design of easier

data outlets based on the important key-value schema, the

place tables are considered as a huge assortment of key value

entries. Key-value stores akin to Bigtable, PNUTS, Dynamo,

ecStore as well as their open source analogous, were the

desired data outlets for applications within the cloud. The
property common to all systems is the important key-value

abstraction where data is considered as key-value pairs and

atomic entry is supported most effective at the granularity of

single keys. These methods are restricts access granularity to

single key accesses, although providing minimal consistency

and atomicity guarantees on multi-key accesses. At the same

time this property works well for current functions, it's

inadequate for the following generation internet applications

which emphasize collaboration. In view that collaboration by

means of definition requires constant entry to groups of keys;

scalable and steady multi key access is valuable for such

functions. Extra the notion of key-value stores and accesses
on the granularity of single keys used to be put ahead as the

sole means to achieve high scalability along with availability

in such techniques. Based on these ideas, a quantity of key

value outlets also called row stores like Bigtable, PNUTS,

Dynamo, ecStore as well as Hbase had been designed and

successfully implemented. Single key atomic entry semantics

naturally makes it possible for effective horizontal data

partitioning, and provide the basis for scalability and

availability in these techniques. Nonetheless, all these key

value stores even though enormously scalable, discontinue

short of supplying transactional guarantees even on a single

row. Thus to satisfy the scalability requirements of net

functions, designers have scarified the capability to support
allotted transactions.

III. FRAMEWORK

A. System Overview

As shown in Fig. 1, an interface is built through which

different structured as well as unstructured data stores in

cloud are connected.

Figure1. System Framework

The RESTful API helps to connect with databases which are

in a cloud. The API connects to the database as per

specification of the developer. The proposed system

performs CRUD (Create, Read, Update and Delete)

operations on the data stores as per developer’s requirement.

After executing the specified query the result is sent back to

the API. On the server side, it shows all the performed

operations and its status. On the API it shows the status of a

query, either execution of successful or unsuccessful with its
code value.

B. REST API/Services

RESTful internet services are offerings which might be

constructed to work best on the net. Representational State

Transfer (REST) is an architectural form that specifies

constraints, such as the uniform interface, that if utilized to a

web provider result in desirable houses, corresponding to

efficiency, scalability, and modifiability, that enable

offerings to work first-rate on the internet. In the REST

architectural style, data and performance are considered

assets, and these resources are accessed utilizing Uniform
Resource Identifiers (URIs), often hyperlinks on the internet.

The resources are acted upon by way of using a suite of

simple, well-outlined operations. The REST architectural

form constrains architecture to client-server architecture, and

is designed to use a stateless conversation protocol, most of

the time HTTP. Within the REST architecture kind,

customers and servers exchange representations of assets

using a uniform interface and protocol. These principles are

encourages RESTful purposes to be easy, lightweight, and

have excessive efficiency. RESTful net services most often

map the four principal HTTP ways to the operations they
execute: create, retrieve, update, and delete. The following

table indicates a mapping of HTTP ways to the operations

they participate.

International Journal For Technological Research In Engineering

Volume 4, Issue 2, October-2016 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2016.All rights reserved. 306

C. Virtual Data Stores

Wrapper REST services alter execution effortless queries

over the concerned data stores. Nevertheless, they may be not

meant to execute advanced queries (corresponding to become
a join, union, and so forth.). In our technique, we have a

tendency to recall Virtual Data Store (VDS) a selected detail

responsible for execution queries submitted by means of

multiple data store application. Multiple data store software

submits CRUD and intricate queries to the VDS which might

be liable of their execution by means of interacting with

acceptable data store through their REST services. VDSs

alter developers to distinctive their a part of queries over

more than one data stores in the course of a declarative

manner and take in charge the burden of their executions.

IV. EXPERIMENTAL RESULTS
To reduce the developer effort for developing tasks with

multiple data stores in this project we proposed or developed

ODBAPI. In our experiments, we used two databases such as

MySQL and MongoDB. By using REST Client API we

perform the CRUD operations such as insert record, update

record, Delete record and Retrieve record on these two

databases.

The above screen describes that the CRUD operations done

on MySQL database.

The above screen describes that the CRUD operations done

on MongoDB database.

V. CONCLUSION

In this paper we conclude that, to execute the complex

queries with multi data stores, we proposed an integration of

set of models, algorithms as well as tools. Through these we

can achieve to task of developing, deploying as well as

migration of multi data store applications in the cloud. The

proposed system focused mainly on three considerations.

These are (i) ODBAPI for CRUD Operations (ii) Virtual data

stores for complex queries execution and (iii) Manifest for
data stores discovery as well as automatic application

deployment.

REFERENCES

[1] R. Sellami, S. Bhiri, and B. Defude, “ODBAPI: a

unified REST API for relational and NoSQL data

stores,” in The IEEE 3rd International Congress on

Big Data (BigData’14), Anchorage, Alaska, USA,

June 27 - July 2, 2014, 2014.

[2] P. Atzeni, F. Bugiotti, and L. Rossi, “Uniform

access to nonrelational database systems: The sos

platform,” in Advanced Data Systems Engineering -
24th International Conference, CAiSE 2012,

Gdansk, Poland, June 25-29, 2012. Proceedings,

2012, pp. 160– 174.

[3] O. Cur´e and et al., “Data integration over NoSQL

stores using access path based mappings,” in

Database and Expert Systems Applications-22nd

International Conference, DEXA 2011.

Proceedings, Part I, 2011, pp. 481–495.

[4] N. Ghosh and S. K. Ghosh, “An approach to

identify and monitor sla parameters for storage-as-

a-service cloud delivery model,” in Workstores
Proceedings of the Global Communications

Conference, GLOBECOM 2012, 3-7 December,

Anaheim, California, USA, 2012, pp. 724–729.

[5] D. Kossmann, “The state of the art in distributed

query processing,” ACM Comput. Surv., vol. 32,

no. 4, pp. 422–469, Dec. 2000.

[6] M. Sellami, S. Yangui, M. Mohamed, and S. Tata,

“Paasindependent provisioning and management of

applications in the cloud,” in 2013 IEEE Sixth

International Conference on Cloud Computing,

Santa Clara, CA, USA, June 28 - July 3, 2013,
2013, pp. 693–700.

[7] R. Sellami and B. Defude, “Using multiple data

stores in the cloud: Challenges and solutions,” in

Data Management in Cloud, Grid and P2P Systems

- 6th International Conference, Globe 2013, Prague,

Czech Republic, August 28-29, 2013. Proceedings,

2013, pp. 87–98.

[8] M. Pollack, O. Gierke, T. Risberg, J. Brisbin, and

M. Hunger, Eds., Spring Data. O’Reilly Media,

October 2012.

[9] P. Atzeni, F. Bugiotti, and L. Rossi, “Uniform

access to nonrelational database systems: The sos
platform,” in Advanced Data Systems Engineering -

24th International Conference, CAiSE 2012,

Gdansk, Poland, June 25-29, 2012. Proceedings,

2012, pp. 160– 174.

