
International Journal For Technological Research In Engineering

Volume 4, Issue 2, October-2016 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2016.All rights reserved. 325

PORTING OF 6LOWPAN WIRELESS NETWORK STACK IN AN

OPEN SOURCE OPERATING SYSTEM FOR IOT EDGE DEVICES

Ravindran.M.S
1
, Geetha.D

2

School of Electronics and Communication, REVA University, Bengaluru, India

Abstract: There is an explosive growth in wireless

communication with sensors and actuators in homes, office

buildings, factories, and even outdoors. Moreover, there is a

desire to incorporate these devices as part of the Internet so

that these devices could be accessed from anywhere. These

devices afford new ways of communicating between each

other, with ―things (edge devices) outside of their own

application scope, with existing infrastructure and

ultimately the outside world. In a nutshell, a broad vision

for the IoT is therefore for everything we might need,

whether we currently know it or otherwise, to be

individually accessible across the Internet.

From this perspective, embedding a TCP/IP stack into the

sensing and acting devices seems an attractive idea, which

is reinforced by the new features IPv6 provides (such as the

large address space and address auto configuration).

Typical sensor devices are equipped with 8-bit

microcontrollers, code memory on the order of 100

kilobytes, and less than 20 kilobytes of RAM. However, the

TCP/IP protocol suite was not originally intended for such

devices; its requirements for the underlying link layers are

generally too strong to be carried out by resource-

constrained devices, while certain network layer features

are too complex and resource consuming.

For these reasons the IETF defined 6LoWPAN (IPv6 over

Low power Wireless Personal Area Networks), [4] an

adaptation layer which intermediates between the network

and the link layers to provide all the services that the

network layer requires but the link layer cannot provide.

Wireless sensor networks are composed of large numbers of

tiny networked devices that communicate untethered. For

large scale networks, it is important to be able to download

code into the network dynamically. It is considered that

Contiki OS an open source [7], a lightweight operating

system with support for dynamic loading and replacement

of individual programs and services.

Contiki is built around an event-driven kernel but provides

optional preemptive multithreading that can be applied to

individual processes. We show that dynamic loading and

unloading is feasible in a resource constrained

environment, while keeping the base system lightweight and

compact.

I. INTRODUCTION

Architecture diagram

Figure 1: Architecture of IoT which includes Edge devices

(nodes), Gateway (Edge router) with a connectivity to

internet cloud.

As we see from the figure 1, cluster of small red nodes

represent Edge devices(also called nodes). Various sensors

are connected to node. Each of the nodes is been flashed with

an embedded software, which includes an opensource OS

containing 6LoWPAN wireless protocol stack and also the

application.When there are more than one node is present in

proximity, each node handshake with other and together they

form a 6LoWPAN network. The big red circle represent a

gateway(also called Edge router).Usually Gateway is a much

powerful board consisting of an SoC and loaded with

operating systems like Linux.Edge router is connected with

internet which is a cloud to upstream the data from edge
node through edge router. Figure 2 shows the block

representation of Node, Gateway and Cloud entities.

Figure 2: Schematic block representation of key entities in

IoT framework.

The objective of this paper is to ultimately develop the

drivers [9] for all the sensors present on the Edge node i.e.

CC2650 (Things) [8] in Contiki OS [7] and then make an
application which sends the value of all the sensor to our

Gateway or edge router i.e. AM335x Board. This application

sends the Data using 6LoWPAN. This paper consists of all

the processes from the initial literature study, to the model of

implementation of Application of 6LoWPAN, passing

through the necessary steps of incorporating Drivers [9] for

the sensors

International Journal For Technological Research In Engineering

Volume 4, Issue 2, October-2016 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2016.All rights reserved. 326

II. RELATED WORK

It is foreseen that the future Internet is an IPv6 network

interconnecting traditional computers and a large number of

smart objects. This Internet of Things (IoT) will be the
foundation of many services and our daily life will depend on

its availability and reliable operation. Therefore, among

many other issues, the challenge of implementing secure

communication in the IoT must be addressed. In the

traditional Internet, IPsec is the established and tested way of

securing networks. It is therefore reasonable to explore the

option of using IPsec as a security mechanism for the IoT.

Smart objects are generally added to the Internet using IPv6

[1] over Low-power Wireless Personal Area Networks

(6LoWPAN), which defines IP communication for resource-

constrained networks. Thus, to provide security for the IoT

based on the trusted and tested IPsec mechanism, it is
necessary to define an IPsec extension of 6LoWPAN. In this

paper, we present such a 6LoWPAN/IPsec extension [2] and

show the viability of this approach. We describe our

6LoWPAN/IPsec implementation, which we evaluate and

compare with our implementation of IEEE 802.15.4 link-

layer security [6]. We also show that it is possible to reuse

crypto hardware within existing IEEE 802.15.4 transceivers

for 6LoWPAN/IPsec. The evaluation results show that IPsec

is a feasible option for securing the IoT in terms of packet

size, energy consumption, memory usage, and processing

time. Furthermore, we demonstrate that in contrast to
common belief, IPsec scales better than link-layer security as

the data size and the number of hops grows, resulting in time

and energy savings. Copyright © 2012 John Wiley & Sons,

Ltd.

Figure 3: General setup of Internet of things

Figure 3 depicts various elements of internet of things which

are in recent development relevant to contemporary IoT

setup. Things are nothing but the end or edge devices where
sensors are connected to. Data from things are typically sent

to Local network which is a gateway. The communicateion

medium from Things to Local network is usally through

wireless. Local network has wired or wireless connectivity to

internet. Cloud data in an internet can be accessed by various

means such as the Mobile, PC, remote servers etc.

III. 6LOWPAN BAED WIRELESS NETWORK MODEL

6LOWPAN layer

6LoWPAN is an intermediate layer that allows the transport

of IPv6 (see Section 2.4.2) packets over IEEE 802.15.4 (see

Section 2.5) frames. Although the term 6LoWPAN [2] stands

for IPv6 over Low-power Wireless Personal Area Networks.

Figure 2.7 depicts how an IPv6 packet is encapsulated into a

IEEE 802.15.4 frame using the 6LoWPAN adaptation layer.
The IPv6 standard defines certain requirements for the link-

layers over which it is to be transported. However, the IEEE

802.15.4 MAC layer does not fulfil these requirements in

certain points. Hence, the 6LoWPAN specification defines

not only the frame format for the transmission of IPv6

packets over IEEE 802.15.4, but also the mechanisms to

obtain a unique IPv6 address from either, 16-bit or 64-bit

IEEE 802.15.4 MAC addresses (using Stateless Address

Auto configuration—defined in RFC 4862), and to overcome

the limitations of IEEE 802.15.4. 16

Figure 4: 6LoWPAN intermediate layer.

6LoWPAN Motivations

● Usage of IPv6 to make use of internet protocols

● Leverage on the success of open protocols in contrast to

proprietary solutions

● Sensors are likely to have restricted wireless connectivity

[3]

● Using IPv6 instead of something proprietary allows the

usage of existing and proven protocols driving the internet
● A fully unmodified TCP/IP stack might clash with

hardware limitations (which are useful for power savings)

● Sensor only need to transfer little data, compared to the

usage scenarios of a Smartphone, PC.

The minimum Maximum Transfer Unit (MTU) required for a

link-layer transporting IPv6 packets is, as defined in RFC

2460, 1280 octets. This is far beyond the maximum IEEE

802.15.4 frame size, which is 127 octets. Of these 127 octets,

the maximum MAC header size is 25 octets and, if IEEE

802.15.4 link-layer security is enabled, it may use up to 21

additional octets. This leaves only 81 octets available for
IPv6 transport. As the IPv6 header length is 40 bytes, only

41 bytes are available for transport layers and so on. In order

to meet the IPv6 minimum MTU requirements, 6LoWPAN

defines a fragmentation and reassembly mechanism that

allows splitting IPv6 packets at the 6LoWPAN adaptation

layer into smaller fragments that can be handled by the link-

layer, with this process being transparent to the Internet

layer.

However, applications using 6LoWPAN are not expected to

use large packets, hence, in order to avoid fragmentation as

much as possible, 6LoWPAN defines an IPv6 header
compression mechanism .

International Journal For Technological Research In Engineering

Volume 4, Issue 2, October-2016 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2016.All rights reserved. 327

IV. MOTIVATION FOR PORTING AN OPERATING

SYSTEM(OS) TO AN IOT EDGE DEVICES

IoT consist of a huge number of single nodes (at edge). They

can be used for a wide range of applications. For all different
application areas different requirements have to be fulfilled.

While in one application it may be most important that the

nodes can operate unattended for very long periods of time,

in another application they may have to be able to process

huge amounts of data in short time frames. Therefore it is of

high importance to choose the right hard ware and software

components for the particular application. The operating

system is one of the most important parts on the software side

of this decision process. There are a lot of sensor node

operating systems available. The Internet of Things (IoT)

embodies a wide spectrum of machines ranging from sensors

powered by 8-bit microcontrollers, to devices powered by
processors equivalent to those in entry-level smart phones.

Neither traditional operating systems (OS) currently running

on Internet hosts, nor a typical OS for sensor networks are

capable to fulfill all at once the diverse requirements of this

wide range of devices. Hence, in order to avoid redundant

developments and maintenance costs of IoT products, a

novel, unifying OS is needed. The wireless sensor nodes

(often called motes) usually have a microcontroller as a CPU

that is not very powerful because the main focus of those

motes lies in minimal power consumption since they are

often designed to run on battery power for very long periods
of time. And even though the microcontroller and all other

components of motes are designed as low power devices,

running them all at full power at all times would still

consume way too much energy. So for that matter the main

focus of those operating systems is energy conservation

optimal usage of limited resource.

V. OPEN SOURCE OS MODEL

Comparison of different OS for IoT

In open source OS worlds,especially for IoT, the two

dominant OS are Contiki [7] and TinyOS. Both provide
implementations of various algorithms, protocols, device

drivers, and helpful tools such as file systems or a shell. On

more traditional devices connected to the Internet, the most

widespread OS are Windows, several UNIX derivatives, and

Linux. TinyOS and Linux are implemented as a monolithic

kernel, while Contiki is built in a modular way that

corresponds to a layered system. In TinyOS a set of required

components is glued to together to build a single, static

binary. The components expose one or more interfaces and

communicate via commands and events. While the Linux

kernel itself is monolithic, it is possible to configure device

drivers as modules. In this way, a Linux system can be
trimmed down to match exactly the particular needs for the

application. But despite the fact that these modules can be

loaded and unloaded during runtime, a failing driver might

still crash the whole system. Contiki offers the OS facilities,

such as device drivers, communication, and sensor data

handling as services. Besides the mandatory components, the

Contiki core however comprises also the uIP stack, a device

driver loader, and the protothreading system. The scheduling

in Contiki is purely event driven, similar to that in TinyOS

where a FIFO strategy is used. Their scheduling strategies

are optimized for simple event processing, such as handling

interrupts from an asynchronous sensor. Linux currently uses

the Completely Fair Scheduler (CFS) that guarantees a fair
distribution of processing time based on a red- black-tree.

The programming models in Contiki and TinyOS are based

on the event driven model, in a way that all tasks are

executed within the same context, although they offer some

kind of multi-threading support. Contiki provide

protothreads as a light-weight and stackless implementation

of simple multi-threading. Since events run to completion, no

process synchronization between protothreads is possible.

Contiki uses a subset of the C programming language, where

some keywords cannot be used. TinyOS is written in a C

dialect called nesC. Linux, on the other hand, supports real

multi- threading, is written in C and offers support for a wide
range of programming and Key characteristics of Contiki,

TinyOS, and Linux, () Full 25 Support, (-) Partial Support,

(X) No Support. The table compares the OS in minimum

memory requirements for a basic application, support for

programming languages, multi-threading, MCUs without

Memory Management Unit, Modularity, and real- time

behavior. Scripting languages.

Table 1: Comparison of different OS considered for IoT edge

node

Choice of Contiki Open source OS

Contiki (Kon-Tiki) is an IPv6 ready, open source WSN

lightweight operative system, design to be highly portable

and memory efficient. Contiki is written in C programming

language and has an event-driven kernel, but is also capable

of handling per-process multithreading and interprocess

communication, achieved by combining the benefits of both

event-driven systems and pre-emptible threads. Contiki

contains two communication stacks: uIP and Rime. uIP is a

small RFC-compliant TCP/IP stack that makes it possible for
Contiki to communicate over the Internet. Rime is a

lightweight communication stack designed for low-power

radios.

VI. RESULTS

The main goal as stated in objectives is to develop the driver

for all the sensors present on the edge node and develop an

application to collect the data from sensor of edge node and

send it to gateway. So the drivers of some sensors are

developed successfully and to see the results one demo

application is develop which is sending the edge node data to
the gateway. After the compilation of all the developed

drivers and application, it will build the binary Image of

Contiki. Then, porting that binary Image to the edge node

can be done using the Open OCD debugger. After the

porting of the Contiki OS on the edge node, it would start

booting and collecting the data by using sensors and start

International Journal For Technological Research In Engineering

Volume 4, Issue 2, October-2016 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2016.All rights reserved. 328

advertising the data to the air. Image of the advertising node.

The results of some sensors data using the android

application whose screenshots are shown below:

Figure 5: A typical Screenshot of the data send by

accelerometer using Android Application

Accelerometer captures the movement of body in x,y and z

co-ordinates. As we observe Green, Red, Blue graph

indicates values of x,y, z axes as positions read through

accelerometer.

VII. CONCLUSIONS

The Driver of the sensors are implemented successfully on
Contiki and the data of the sensors is transmitted successfully

to the gateway using 6LoWPAN and UDP protocols. [5]

Contiki is also proved easy to work with, although it did see a

lot of development during the course of this project, which

made it slightly more difficult to test. Still, it is noted that

Contiki is the Operating system offering support for TCP and

C language programming. 6LoWPAN Protocol is used for

transferring node data to gateway, CC2650 [8] also supports

Bluetooth so that data can be transferred using Bluetooth

(BLE stick) to gateway. A python scriptcan be used to see the

results of the received data at the gateway node. Gateway
sends the data to the cloud and that data can be accessed

using web page, android application etc. In this work, the

environment can be monitored using sensors at the node but

in future, the environment can also be controlled using the

same Operating system Contiki.

REFERENCES

[1] R. Hinden and S. Deering. IP Version 6 Addressing

Architecture. RFC 4291, Internet Engineering Task

Force, February 2006.

[2] "IPv6 over Low power WPAN (6lowpan)". IETF.

Retrieved 10 May 2016.
[3] Pallàs-Areny R., "Section 2 Sensing methods and

sensors", Electronic Instrumentation course, (2013).

[4] In 6LoWPAN: The Embedded Internet (Wiley,

2009), Shelby and Bormann redefine the 6LoWPAN

acronym as "IPv6 over lowpower wireless area

networks," arguing that "Personal" is no longer

relevant to the technology.

[5] Postel, J. (1980). User Datagram Protocol.

http://tools.ietf.org/html/rfc0768.

[6] IEEE Standard for Information Technology-

Telecommunications and Information Exchange

between Systems- Local and Metropolitan Area

Networks- Specific Requirements Part 3

[7] A Trek Through the Contiki Operating System
created by Hossam Ashtawy, Troy Brown, Xiaojun

Wang, Yuan Zhang Department of Computer

Science and Engineering Michigan State University

[8] Data sheet of TI CC2650

[9] https://en.wikipedia.org/wiki/Device_driver

https://datatracker.ietf.org/wg/6lowpan/
https://en.wikipedia.org/wiki/Internet_Engineering_Task_Force
http://www.eetimes.com/design/embedded-internet-design/4216240/6LoWPAN--The-wireless-embedded-Internet---Part-1--Why-6LoWPAN-?pageNumber=0

