
International Journal For Technological Research In Engineering

Volume 2, Issue 4, December-2014 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2014.All rights reserved. 339

EER TO UML MODEL TRANSFORMATION USING ATLAS

TRANSFORMATION LANGUAGE (ATL)

Shivaji Arjun Kakad
1
, Prof. Y. N. Patil

2

1,2
Department of Computer Engineering

Dr. BAT University, Lonere, Raigad (MH, INDIA)

Abstract: The purpose of this report is to transform

Enhanced (Extended) Entity Relationship (EER) to Unified

Modeling Language (UML) that is EER to UML. EER

contains all concepts of ER. EER adds more concepts like

Specialization/Generalization, Subclass/Super Class,

Categories and Inheritance to get more accuracy than ER.

UML includes a set of graphic notation techniques to create

visual models of Object-oriented software intensive systems.

Unified Modeling Language is a standard for software

development. EER Diagram on the other hand is used for

database design. The class diagram included in the UML

alone is contender for replacing entity relationship models.

UML was not explicitly created to support database design.

This provides an easy way to enter the specifications of a

database and to make UML class diagram from it.

Keywords: ATL, IDE, EER, EMF, MDE, Model-to-Model

Transformation, UML.

I. INTRODUCTION

This chapter gives overview about existing method and

techniques for model transformation and transformations

present now a days.

A. Literature Survey

The following figure shows the database modeling and

implementation. Here the ideas in our mind can be modeled

using the techniques like Entity Relationship (ER), Enhanced

Entity Relationship (EER), Unified Modeling Language

(UML), etc. Then it is converted to the relational schema, and

then we can do the Relational Database Management System

(RDBMS) implementation shown below

Figure 1: Database Modeling and Implementation Process

B. Existing Transformations

There are various transformations are present at the Eclipse

Foundation, ATL examples at the website given here is

http://www.eclipse.org/atl/documentation/basicExamples-

Patterns/. The list of some of them is given below

1. UML to JAVA

2. Class to Relational

3. Tree to List

4. Book to Publication

5. Families to Persons

6. KM3 to Metrics

7. KM3 to Measure

8. Excel to S/W Quality Control

9. Ant to Maven

10. BibTeXML to DocBook
11. Make to Ant

12. OpenBlueLab to UML

13. Table to Microsoft Office Excel

14. Java source to Table

15. MOF to UML

16. Measure to XHTML

17. Measure to table

18. KM3 to EMF

19. KM3 to ATL copier

20. KM3 to XML

21. MySQL to KM3

22. ATL to BindingDebugger
23. Maven to Ant

24. Monitor to Semaphore

25. Simple Class to Simple RDBMS

26. Public to Private, etc.

C. Available Transformation Languages

There are some transformation languages are listed below

ATL- a transformation language developed by the INRIA.

Tom- a language based on rewriting calculus, with pattern-

matching and strategies.

JTL- a bidirectional model transformation language

specifically designed to support

non-bijective transformations and change propagation.

M2M- is the Eclipse implementation of the OMG QVT

standard.

QVT- the OMG has defined a standard for expressing M2M

transformations, called MOF/QVT or in short QVT.

VIATRA- a framework for transformation based verification
and validation environment.

International Journal For Technological Research In Engineering

Volume 2, Issue 4, December-2014 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2014.All rights reserved. 340

II. Model Driven Engineering

Model-driven engineering (MDE) is a software development

methodology which focuses on creating and exploiting

domain models (that is, abstract representations of the
knowledge and activities that govern a particular application

domain), rather than on the computing (or algorithmic)

concepts.

A. ATL

ATL is Atlas Transformation Language. ATL is a model to

model transformation language developed at INRIA. It is

specified both as a metamodel and as a textual concrete

syntax. It is a hybrid style combination of declarative style

and imperative style. In declarative style, simple mappings

can be expressed simply. Imperative style constructs are

provided to express complex mappings.

B. STRUCTURE OF ATL

In MDE everything is called a model. A model refers to an

abstract view of a real world system of interest, i.e., a

simplification of a system. A model conforms to a

metamodel while a metamodel conforms to a metametamodel

(MMM). Model Driven Development (MDD) is copyrighted

term by Object Management Group (OMG). One of the most

important operations in MDE/MDD is model to model

transformation. There are different kinds of model

transformations including model to model and model to code,
model to text. We are using model to model transformations

in this paper.

Figure 2 Structure of process for ATL

Above figure shows the structure of process of model

transformation. Every artifact in MDE is a model; the model
to model transformation is also a model that conforms to a

metamodel. The transformation model defines how to

generate models that conform to a particular metamodel from

models that conform to another metamodel or the same

metamodel. In above figure, the transformation model Mt

transforms Ma to Mb. Mt conforms to MMt while Ma and

Mb conform to MMa and MMb. The three metamodels

conform to a common metametamodel MMM. This is shown

in above figure.

III. ATL DEVELOPMENT

The ATL module corresponds to a model to model

transformation. Here we are taking example of Circle to

Square transformation. The file extension for this is .atl. It
consists of Header, Import, Helpers, and Rules thee are

explained below

A. HEADER

The header section is the first section, which defines the

names of the transformation module and the variables of the

source and target metamodels. The following ATL example

code represents the header of the Circle2Square.atl file, thus

the ATL header for the transformation from Circle2Square:

module Circle2Square;

create OUT :Square from IN :Circle;

The keyword module defines the module name. The
keyword create introduces the target models declaration,

while from introduces the source models declaration.

This is compulsory section.

B. IMPORT

The import section is the second section, which declares

what libraries have to be imported. For example, to import

the strings library, one would write:

uses strings;

This is optional section. The keyword uses declares the

libraries that have to be imported. We can import several
libraries.

C. HELPERS

This is third section; Helpers can be used to define (global)

functions and variables. Helper functions can call each other

(recursion is possible) or they will be called from within

rules. In general, they serve to define repetitive pieces of

code in one place. The following text shows the example of

helper

helper context MM!Color

def: toString() : String = self.value;
Also, this is optional section.

D. RULES

Rules describe the transformation from a source model to a

target model by relating metamodels. Each rule contains a

unique name. It is introduced by the keyword rule that is

followed by the rule’s name. Its implementation is

surrounded by curly brackets. The example of relations

transformation shown in below rule

Rule Relations

{

from RC:MM!Relation
to RS:MM1!Relation

(

Source <- RC.Source,

Target <- RC.Target

)

}

Also, this is optional section.

International Journal For Technological Research In Engineering

Volume 2, Issue 4, December-2014 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2014.All rights reserved. 341

IV. EXECUTION OF ATL

The process of the ATL execution environment is shown in

figure 4.1 given below. That contains the following parts

across several layers,
• ATL Compiler. This transforms ATL programs into

programs in byte-code,

• ATL Virtual Machine. It executes the byte-code generated

by the compiler. It will help for provides set of instructions

for model manipulation and handling models.

• Model Handler Abstraction Layer. The VM may run on top

of different model management systems. To separate the

machine from their specifics an intermediate level is

introduced called Model Handler Abstraction Layer. This

layer transforms the instructions of the Virtual Machine

(VM) for model manipulation to the instructions of a specific

model handler.
• Model Handlers. These components that provide

programming interface for model manipulation. Some of the

examples are Eclipse Modeling Framework (EMF) and

Metadata Repository (MDR).

• Model Repository. This provides storage facilities for

models. As given in figure below, shows the simplest form of

a model repository is the file system that stores models as

XML files serialized according to the XML Metadata

Interchange (XMI) standard. Because of this type of layered

architecture we can achieve the requirements for flexibility of

the execution engine. Additions of new language features
affect mainly the ATL compiler. A more efficient execution

requires changes in the compiler (some static optimizations

may be performed by the compiler) and the implementation

of the VM.

*The simplest form of a model repository is a file system

Figure 4. Process of Execution

Now a day’s present program will run on top of a new

Virtual Machine provided that it conforms to the same set of

instructions. A specification of Atlas Transformation
Language Virtual Machine is provided on the GMT website.

The following figure shows the requirements of the

transaction while execution. Here, the requirements for the

transformations are input model (M), input metamodel

(MM), output metamodel (MM). and last one and important

is ATL file that contains ATL rules for transformation of

model.

Figure 5. Requirements of transformation

V. Mapping EER to UML

We are giving the EER model as input, then doing

preprocessing on EER model, after preprocessing we can use

ATL transformation rules, for the transformation of EER to

UML. ATL transformation rules are described in next

chapter. The transformation architecture is given below.

shows the scenario of above. At the time of transformation

we are using metamodels of both EER and UML. We get the
output model i.e. UML model in .xmi file format.

Figure 6. EER to UML transformation architecture

In below figure we can see various similar terminologies

between EER and UML. We are going to use these

terminologies for various transformations between EER to

UML. Here the EER model is transformed in UML model by

using following conversion of respective elements. Like

entity type from EER is transformed into class in UML,

entity from EER is transformed into object in UML, attribute

from EER is transformed into attribute in UML, relation type

from EER is transformed into association in UML,

composite attribute from EER is transformed into structured

domain in UML, derived attribute from EER is transformed
into operation in UML, relationship instance from EER is

transformed into class in UML, cardinality from EER is

transformed into multiplicity in UML, etc. The following

figure shows the EER entity to its equivalent UML class.

Figure 7. EER vs. UML Terminology

International Journal For Technological Research In Engineering

Volume 2, Issue 4, December-2014 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2014.All rights reserved. 342

Figure 8. Entity to its equivalent Class

Implementation:

For the above modeling transformation we need to install the

modeling version of Eclipse. Once you are ready with the

eclipse then you need to install some plug-in i.e. ATL SDK,

GMF(Graphical Modeling Framework) Tooling SDK, etc.

Then you need to create a new ATL project named as

EER2UML in which you will need to develop source

Metamodel and target metamodel. Along with these two
metamodels we also need to write transformation rules for

converting EER elements into corresponding UML elements.

The eclipse screen shots are given in figure. As shown in

figure, in ATL configuration we need to select EER as well

as UML metamodels from existing workspace in respective

sections. Also the XMI file of the source model or as input is

needed to select in field Source model. And at target model

we have to write the name of the output XMI file. Thus after

this we have to click on Apply button and then RUN button.

Thus after successful execution we get the UML XMI file as

output in package explorer section of Eclipse.

Figure 9. EER Metamodel

Figure 10. UML Metamodel

UML is not simply a replacement for Entity Relationship

Diagramming. It is a complete, integrated object-modeling

environment with n parts. The class diagram included in the

UML alone is contender for replacing entity relationship

models. We no longer operate in a development environment
where there will be many competing modeling standards.

Figure 11. Eclipse metamodel editor (EER)

Figure 12. Eclipse metamodel editor (UML)

International Journal For Technological Research In Engineering

Volume 2, Issue 4, December-2014 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2014.All rights reserved. 343

Figure 13. ATL run configuration

Despite its advantages over ER diagramming, UML is not

without its weaknesses. In some ways, UML diagrams have

more symbols making them more cluttered and therefore less

easily understood by users. This may be due to the fact that

UML was not explicitly created to support database design.
However, class diagrams in UML are a superset of entity

relationship modeling. There is nothing that can be expressed

with ERDs that cannot be expressed in UML notation; and

there are many more structures and relationships possible to

express in UML that are not possible with ERD notation. A

major strength of UML is that it is explicitly extendable. This

openness of UML architecture raises the specter of deviation

from the standard. However, UML is rich enough that such

deviation should be minimal and easily controlled. UML can

and should be used now for both logical and physical

relational database modeling. The only reason not to make
the shift now is that we do not currently have the products to

support this shift.

VI. CONCLUSIONS

In this paper first we presented ATL (Atlas Transformation

Language), which is a model transformation language created

as a part of the ATLAS Model Management Architecture.

ATL is built on top of the Eclipse environment supported by

a set of development tools. In this project we have done EER

to UML model transformation in eclipse. In which we have

defined the metamodels and rules for the EER to UML

transformation. Unified Modeling Language is a standard for
software development. Extended Entity Relationship

Diagram (EERD) on the other hand is used for database

design. The class diagram included in the UML alone is

contender for replacing entity relationship models. UML was

not explicitly created to support database design. This

provides an easy way to enter the specifications of a database

and to make UML class diagram from it. This accepts input

as EER Diagram. The diagram can save the given

information. This information will save this information in

XMI file. By analyzing the saved information, the mapping

from EERD to UML will be done and then the output viz. the
corresponding UML class diagram will be generated.

VII. ACKNOWLEDGEMENT

I would like to thank Prof. Y. N. Patil for his guidance

for database system, by using which I have done this. We

would like to thanks for our parents for everything. We also
would like to thank Dr. A. W. Kiwelekar head of Department

of Computer Engineering and other staff.

 REFERENCES

[1] ATLAS Transformation Language,

http://en.wikipedia.org/wiki/ATLAS-

Transformation-Language

[2] Eclipse Foundation, Generative Model Transformer

Project, website address

http://www.eclipse.org/gmt/.

[3] ATLAS group, INRIA & LINA, KM3: Kernel

MetaModel Manual. 2004.
[4] ATLAS group LINA & INRIA Nantes, “ATL User

Manual version 0.7,” Online resource available at:

http://www.eclipse.org/m2m/atl/doc/ATL_User_Ma

nual[v0.7].pdf.

[5] Bézivin, J., Jouault, F., and Touzet, D. An

Introduction to the ATLAS Model Management

Architecture. Research Report LINA, (05-01).

[6] Netbeans Meta Data Repository (MDR).

http://mdr.netbeans.org.

[7] ATLAS group, Installation of ADT from source

2004 http://www.sciences.
univnantes.fr/lina/atl/www/papers/ATL/ATL_Docu

mentation/ADTInstallation.pdf.

[8] Czarnecki, K., Helsen, S.: Feature-based survey of

model transformation approaches. IBM Systems

Journal 45 (2006) 621–645.

[9] Eclipse Foundation, ATL examples

http://www.eclipse.org/atl/documentation

/basicExamples -Patterns/.

[10] Agrawal A., Karsai G., Kalmar Z., Neema S., Shi

F., Vizhanyo A.The Design of a Simple Language

for Graph Transformations, Journal in Software and
System Modeling, in review, 2005.

[11] Joseph Fong, Mapping of ER to object modeling

techniques.

[12] Frdric Jouault, Ivan Kurtev, Transforming Models

with ATL.

