WEATHER MONITORING SYSTEM

1Purak sethi, 2Ravi Antil
1Student, 2Assistant Professor
Department of Electronics and Communication Engineering
Mahavir Swami Institute of Technology, Sonipat, India

Abstract: The industry for Weather Monitoring System is growing. According to studies Weather Monitoring System product are increasing rapidly. Artificial intelligence and IoT are the future. It can be used in as well, for older people to work or for handicap. So they will not depend on others. In this project a DH22 module was used to measure temperature. The project consisted of jumper wire, Arduino Uno and dh22 sensor.

I. INTRODUCTION

Numerous things influence the climate. What's more, climate influences generally living just as nonliving things. At the Weather station investigation of various natural boundaries utilizing a few instruments and gear has been finished. So to meet the objective of climate observing we have planned IoT-based constant, minimal effort, versatile and high velocity climate stations utilizing Arduino Uno. At our climate station, we are estimating some ecological boundaries like temperature, moistness, light power, water level, pressing factor, and height. GSM module, ZigBee module, Ethernet module alongside ADC, and microcontroller are utilized by many climate observing frameworks for ecological boundaries checking. ARM-based Arduino Uno board can deal with numerous activities and a similar one is utilized in this framework. In this framework, there is no requirement for any outside module, microcontroller, and ADC. The proposed framework utilizes an IDLE word processor where projects can be written in C. Yield information can be seen on Firebase. IoT implies the Internet of Things. It gives between systems administration of actual gadgets, structures, vehicles, and different segments like sensors and actuators. By giving organization network to frameworks inserted with hardware, programming, sensors, and actuators

II. Literature Survey

1. In their paper, first there in introduction to devices
2. Process is to measure the temperature using DHT11 sensors
3. Code of dht22
4. Conclusion and references

III. CONSTRUCTION

1. Software
The code for the microcontroller was created in Arduino IDE.
b) DH22 sensor
DH22 is a highly accurate humidity and temperature sensor. This sensor measures relative humidity values. It uses the capacitive sensor element to measure Humidity. For measuring temperature it uses NTC thermistor.

c) Jumper Wire
A jumper wire (also known as jumper, jumper wire, jumper cable, DuPont wire or cable) is an electrical wire, or group of them in a cable, with a connector or pin at each end (or sometimes without them — simply "tinned"), which is normally used to interconnect the components of a breadboard or other prototype or test circuit, internally or with other equipment or components, without soldering.

IV. Code

```c
#include <Adafruit_Sensor.h>
#include <DHT.h>
#include <DHT_U.h>

#define DHTPIN            2         // Pin which is connected to the DHT sensor.

// Uncomment the type of sensor in use:
// #define DHTTYPE           DHT11     // DHT 11
#define DHTTYPE           DHT22     // DHT 22 (AM2302)
// #define DHTTYPE           DHT21     // DHT 21 (AM2301)

// See guide for details on sensor wiring and usage:
// https://learn.adafruit.com/dht/overview

DHT_Unified dht(DHTPIN, DHTTYPE);

void setup() {}
  Serial.begin(9600);
  // Initialize device.
  dht.begin();

void loop() {
  // Delay between measurements.
  delay(delayMS);
  // Get temperature event and print its value.
  sensors_event_t event;
  dht.temperature().getEvent(&event);
  if (!isnan(event.temperature)) {
    Serial.println("Temperature: ");
  }
  else {
    Serial.print("Error reading temperature!");
  }
}
```
Serial.print(event.temperature);
Serial.println(" °C");
)
// Get humidity event and print its value.
dht.humidity().getEvent(&event);
if (isnan(event.relative_humidity)) {
 Serial.println("Error reading humidity!");
} else {
 Serial.print("Humidity: ");
 Serial.print(event.relative_humidity);
 Serial.println("%");
}

V. Applications
• It does not required any human attention.
• The system deals with monitoring and controlling
 the environmental conditions like temp, relative humid.
• This system is fully automatic system
• Accuracy is high.
• It can be helpful in places where its quite difficult
to stay for human beings longer.

VI. RESULT
We can measure temperature by dht22 sensor.

VII. CONCLUSION
In our project, we explored IOT and made weather
monitoring system using Arduino Uno.

We gained in-depth knowledge on hardware components and
its architecture

VIII. ACKNOWLEDGMENT
We would like to thank all those who have directly or
indirectly encouraged us to take up this project. Specially
the authors of different research papers referred during
writing this paper.

REFERENCES
1. Arko Djajadi, Michael Wijanarko, “Ambient
 Environmental Quality Monitoring Using IoT
 Sensor Network”, Internetworking Indonesia
 Journal (IIJ) - Vol.8/No.1 (2016)
2. Tamilarasi B, Saravanakumar P, “Smart Sensor
 Interface for Environmental Monitoring in IoT”,
 International Journal of Advanced Research in
 Electronics and Communication Engineering
 (IJARECE) - Volume 5, Issue 2, February 2016
 Arduino, 'PWM' April 2020. [Online]. Available:
 28- Apr -2020]
4. https://pimylifeup.com/raspberry-pi-
 humidity-sensor-dht22/
5. Ms. Padwal S. C., Prof. Manoj Kumar, “Application
 of WSN for Environment Monitoring in IoT

Applications”, International Conference On
Emerging Trends in Engineering and Management
https://github.com/ofalvai/raspi-weather