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Abstract-This report is about studying the basic components 

of Reinforcement Learning technology such as: Reward: 

The reward is a scalar feedback signal which indicates how 

well the agent is doing at step time t. In reinforcement 

learning we need define our problem such that it can be 

applied to satisfy our reward hypothesis. An example would 

be playing a game of chess where the agent gets a positive 

reward for winning a game and a negative reward for losing 

a game. Reward Hypothesis: All goals can be described by 

the maximisation of expected cumulative reward. Since our 

process involves sequential decision making tasks, our 

actions we make early on may have a long-term consequence 

on our overall goal. Sometimes it may be better to sacrifice 

immediate reward (reward at time step Rt) to gain more 

long-term reward. An example applied to chess would be to 

sacrifice a pawn to capture a rook at a later stage. Since 

then, this topic is declared to research and create an online 

game, Our project is modelled after the popular online 

multiplayer game haxball. HaxBall is a physics-based 

multiplayer soccer game where teamwork is key. In this 

example however we are trying to build a model that is 

capable of learning on how to play and become good enough 

to beat other strong players in 1v1 matches. This model will 

make use of python libraires like numpy, pandas, gym, 

pygame and frameworks like Google’s TensorFlow and 

OpenAI baselines to build a system that can be used to train 

multiple models in parallel without the need of any manual 

play 

 

Introduction 

 

Reinforcement Learning is a feedback-based Machine learning 

technique in which an agent learns to behave in an 

environment by performing the actions and seeing the results 

of actions. For each good action, the agent gets positive 

feedback, and for each bad action, the agent gets negative 

feedback or penalty. In Reinforcement Learning, the agent 

learns automatically using feedbacks without any labelled 

data, unlike supervised learning. Since there is no labelled 

data, so the agent is bound to learn by its experience only. RL 

solves a specific type of problem where decision making is 

sequential, and the goal is long-term, such as game-playing, 

robotics, etc. The agent interacts with the environment and 

explores it by itself. The primary goal of an agent in 

reinforcement learning is to improve the performance by 

getting the maximum positive rewards. The agent learns with 

the process of hit and trial, and based on the experience, it 

learns to perform the task in a better way. Hence, we can say 

that "Reinforcement learning is a type of machine learning 

method where an intelligent agent (computer program) 

interacts with the environment and learns to act within that." 

How a Robotic dog learns the movement of his arms is an 

example of Reinforcement learning. It is a core part of 

Artificial intelligence, and all AI agent works on the concept 

of reinforcement learning. Here we do not need to pre-

program the agent, as it learns from its own experience 

without any human intervention. Example: Suppose there is an 

AI agent present within a maze environment, and his goal is to 

find the diamond. The agent interacts with the environment by 

performing some actions, and based on those actions, the state 

of the agent gets changed, and it also receives a reward or 

penalty as feedback. The agent continues doing these three 

things (take action, change state/remain in the same state, and 

get feedback), and by doing these actions, he learns and 

explores the environment. The agent learns that what actions 

lead to positive feedback or rewards and what actions lead to 

negative feedback penalty. As a positive reward, the agent 

gets a positive point, and as a penalty, it gets a negative 1 

point. The objectives of this thesis were to illustrate and 

understand the fundamental concepts and usage Fundamental 

Concepts of Reinforcement Learning, as well as their 

compatibilities and advantages as compared to other machine 

learning algorithms. The thesis achieved that goal by 

Increasing the level of abstraction, the scenario we’re 

considering can be described as: a generic agent performs 

actions inside an environment and receives feedback that is 

somehow proportional to the competence of its actions. 

According to this feedback, the agent can correct its actions in 

order to reach a specific goal. This document structure was 

organized as follow. The first section brought in the goal of 

the thesis and technologies used. Next, essential concepts and 

theoretical background of each technology in the stack was 

introduced along with example, followed by the third section 

which demonstrated carefully and thoroughly the application 

development process, from back-end to front-end. In the end, 

this paper provided discussion of the project with further 

improvements and gave conclusion about the final product. 

 

PROBLEM STATEMENT 

 

The goal of this project is to implement a bot using Reinforced 

Learning (DQN) in python using OPENAI baselines and other 

python data science and simulation libraries that will surpass 

an above average player in the popular football/air hockey 

hybrid game haxball and be a proof of concept about the 

application of reinforcement learning in other fields. The 

Project will have to replicate haxball’s game system and then 

devise methods that can be used to better train the model 
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efficiently taking least resources possible for the operation. 

The problem also involves finding the optimal algorithm that 

can be used for the said problem and will make a comparative 

analysis of the performances to set up benchmarks for future 

use. 

 

What is reinforcement Learning 

 

Reinforcement learning is the training of machine learning 

models to make a sequence of decisions. The agent learns to 

achieve a goal in an uncertain, potentially complex 

environment. In reinforcement learning, an artificial 

intelligence faces a game-like situation. The computer 

employs trial and error to come up with a solution to the 

problem. To get the machine to do what the programmer 

wants, the artificial intelligence gets either rewards or 

penalties for the actions it performs. Its goal is to maximize 

the total reward. Although the designer sets the reward policy–

that is, the rules of the game–he gives the model no hints or 

suggestions for how to solve the game. It’s up to the model to 

figure out how to perform the task to maximize the reward, 

starting from totally random trials and finishing with 

sophisticated tactics and superhuman 2 skills. By leveraging 

the power of search and many trials, reinforcement learning is 

currently the most effective way to hint machine’s creativity. 

In contrast to human beings, artificial intelligence can gather 

experience from thousands of parallel gameplays if a 

reinforcement learning algorithm is run on a sufficiently 

powerful computer infrastructure. Examples of reinforcement 

learning Applications of reinforcement learning were in the 

past limited by weak computer infrastructure. However, as 

Gerard Tesauro’s backgamon AI superplayer developed in 

1990’s shows, progress did happen. That early progress is now 

rapidly changing with powerful new computational 

technologies opening the way to completely new inspiring 

applications. Training the models that control autonomous 

cars is an excellent example of a potential application of 

reinforcement learning. In an ideal situation, the computer 

should get no instructions on driving the car. The programmer 

would avoid hard-wiring anything connected with the task and 

allow the machine to learn from its own errors. In a perfect 

situation, the only hard-wired element would be the reward 

function. For example, in usual circumstances we would 

require an autonomous vehicle to put safety first, minimize 

ride time, reduce pollution, offer passengers comfort and obey 

the rules of law. With an autonomous race car, on the other 

hand, we would emphasize speed much more than the driver’s 

comfort. The programmer cannot predict everything that could 

happen on the road. Instead of building lengthy “if-then” 

instructions, the programmer prepares the reinforcement 

learning agent to be capable of learning from the system of 

rewards and penalties. The agent (another name for 

reinforcement learning algorithms performing the task) gets 

rewards for reaching specific goals. 

 
Pros of Reinforcement Learning 

• Reinforcement learning can be used to solve very 

complex problems that cannot be solved by conventional 

techniques. 

• This technique is preferred to achieve long-term 

results, which are very difficult to achieve. 

• This learning model is very similar to the learning of 

human beings. Hence, it is close to achieving perfection. 

• The model can correct the errors that occurred during 

the training process. 

• Once an error is corrected by the model, the chances 

of occurring the same error are very less. 

• It can create the perfect model to solve a particular 

problem. 

• Robots can implement reinforcement learning 

algorithms to learn how to walk. 

• In the absence of a training dataset, it is bound to 

learn from its experience. 

• Reinforcement learning models can outperform 

humans in many tasks. DeepMind’s AlphaGo program, a 

reinforcement learning model, beat the world champion Lee 

Sedol at the game of Go in March 2016.  

• Reinforcement learning is intended to achieve the 

ideal behavior of a model within a specific context, to 

maximize its performance. 

• It can be useful when the only way to collect 

information about the environment is to interact with it. 

• Reinforcement learning algorithms maintain a 

balance between exploration and exploitation. Exploration is 

the process of trying different things to see if they are better 

than what has been tried before. Exploitation is the process of 

trying the things that have worked best in the past. Other 

learning algorithms do not perform this balance. 

 

Cons of Reinforcement Learning 

• Reinforcement learning as a framework is wrong in 

many different ways, but it is precisely this quality that makes 

it useful. 

• Too much reinforcement learning can lead to an 

overload of states, which can diminish the results. 

• Reinforcement learning is not preferable to use for 

solving simple problems. 

• Reinforcement learning needs a lot of data and a lot 

of computation. It is data-hungry. That is why it works really 

well in video games because one can play the game again and 

again and again, so getting lots of data seems feasible. 

• Reinforcement learning assumes the world is 

Markovian, which it is not. The Markovian model describes a 

sequence of possible events in which the probability of each 

event depends only on the state attained in the previous event. 
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• The curse of dimensionality limits reinforcement 

learning heavily for real physical systems. According to 

Wikipedia, the curse of dimensionality refers to various 

phenomena that arise when analyzing and organizing data in 

high-dimensional spaces that do not occur in low-dimensional 

settings such as the three-dimensional physical space of 

everyday experience. 

• Another disadvantage is the curse of real-world 

samples. For example, consider the case of learning by robots. 

The robot hardware is usually very expensive, suffers from 

wear and tear, and requires careful maintenance. Repairing a 

robot system is costs a lot. 

• To solve many problems of reinforcement learning, 

we can use a combination of reinforcement learning with other 

techniques rather than leaving it altogether. One popular 

combination is Reinforcement learning with Deep Learning. 

Difference between Reinforcement Learning and Deep 

Learning 

 

The main difference between reinforcement learning and deep 

learning is this: Deep learning is the process of learning from 

a training set and then applying that learning to a new data set. 

But reinforcement learning is the process of dynamically 

learning by adjusting actions based on continuous feedback to 

maximize a reward. 

Deep learning makes use of the existing available data and 

uses that data to predict patterns. Reinforcement learning can 

learn from its experience through trial and error. 

Applications of Reinforcement Learning 

 

A variety of problems can be solved using reinforcement 

learning. Some of them are game-playing, robotics, and many 

other fields. 

As I mentioned earlier, reinforcement learning is the best 

technology used for game playing. It can even beat world 

champions. 

Reinforcement learning can be used effectively to determine 

the best move to make in a game, depending on several 

different factors. It is very handy in games like Chess, Go, etc. 

Using reinforcement learning, we can improve and personalize 

the gaming experience in real-time. It is the algorithm that can 

solve different games and sometimes achieve super-human 

performance. 

This technology is used for the learning of robots. Robots are 

trained using the trial and error method with human 

supervision. Reinforcement learning teaches robots new tasks 

while retaining prior knowledge. 

E-commerce websites like Amazon can use reinforcement 

learning to solve their problems to generate the maximum 

revenue by displaying the most relevant ads to interested 

buyers. 

Self-driving cars also implement some reinforcement learning 

algorithms. Reinforcement learning can also be applied to 

optimizing chemical reactions 

 

RESEARCH AND DEVELOPMENT 

 

 

There were many applications for constructing a 

reinforcement learning bot, and we used OpenAI baselines 

and py gym technologies to develop a bot in this study. The 

libraries being used to handle the training data and process it 

are standard data science libraries like Numpy, Pandas and 

Tensorflow. These libraries provide a well documented set of 

tools that can be used to process n-dimensional at superb 

speeds. 

 

MATH BEHIND REINFORCEMENT LEARNING 

 

 

States & Rewards 

 

Let’s consider a sequence of states S1, S2, …, Sn each of 

them has some kind of reward R1, R2,…,Rn. An agent has the 

job to maximise its total reward. It will choose the states-path 

that provides the maximum rewards. 

 

Suppose the agent is at a random state, there should be a way 

for it to know what is the best path that maximises its reward. 

The challenge here being that the agent does not see beyond 

its immediate neighbouring states. Thus, in addition to the 

reward of each state S, we are also going to store V. 

 

V represents rewards of other states to which each state is 

connected to. 

 

Example, V1 represents the total rewards of all the states 

connected to S1. The reward R1 is not part of V1. But the 

reward R2 at S2 is part of V1 at S1. 

 
This way by simply looking at the next state, the agent will 

have an idea what lays behind. 

 

The value V stored at state S is computed via a function called 

“Value Function”. The Value function computes the future 

rewards. The final states, also called terminal states, do not 

have value V since there are no future states or rewards. 

 

 

The Importance of States & Rewards in Reinforced Learning 

 
 

 

This will create a sequence of increasing V from the origin till 

the end, which constitutes a hint to the agent on which 

direction maximises its reward. So, V(s), the Value Function 

returns the future rewards coming from other states. 

 

Here, St are all the states that are connected directly or 

indirectly to S. Computationally it becomes more efficient to 

calculate V(s) (current state) when we know the V(s’) next 

states, instead of summing all the rewards of all future states. 

The Equation now becomes : 
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So far we have assumed that all states are connected in 

sequence, however this is rarely the case, each state can be 

connected to multiple other states to which the agent can 

potentially move to. Let S1 be connected to S2, S3, S4, and 

S5, the value V at S1 should reflect this situation. 

 

 
 

V(S1) is the average of all values of states to which it is 

connected. This suggests that from S1 we can go to S2, S3, 

S4, and S5 without any preference to any particular state. 

 

This is not accurate, because we know that there is a certain 

probability to go to each neighbour state and these 

probabilities might not be the same. 

 

Lets call these probabilities p2, p3, p4, p5 respectively. So 

V(S1) becomes 

 
 

These probabilities are called transition probabilities and they 

express the likelihood of transitioning from one state to 

another. To express them as a matrix P where Pij is the 

probability of transition from a state i to a state j. When no 

transition is possible the Pij will be zero. We now have 

transformed the equation to : 

 
Here P(Sk|S) is the probability of reaching state Sk knowing 

our current state. 

 

Stochastic Rewards 

The reward itself is not deterministic, which means you can’t 

assume that R is precisely known at every state. In fact it is 

probabilistic and can take different values. Consider the aim 

on a target, we will suppose there are only three states, S1 

(aiming), S2 (hit), S3 (miss). 

 
 

Thus the probability in such a case won’t be uniform. 

 
 

 

So the value at state S1 will be : 

 
 

Since S2 and S3 are terminal states, then V(S1) and V(S2) are 

zero, but they are mentioned above to keep reminding of the 

general formula. 

The rewards in every state are multiplied, then summed 

together and each state is multiplied by the transition 

probability that leads to it. 
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From the above we can deduce the general formula: 

Here, p(si, rj|s) is read as the probability of transiting from 

state s to si with a reward rj. We can thereby generalize and 

state 

 
Actions and Policy 

 

The probability of going from state s after performing action 

a, to the state s’ and getting reward r is not 100%. That’s why 

we write p(s’,r|s, a) which is the probability of transiting to 

state s’ with reward r given a state s and an action a. 

 

The strategy that dictates which action to use at a certain state 

is called policy. As usual we quantify this in the V(s) by 

averaging all these possibilities. 

 
(a|s) is the probability of using action a following the policy 𝜋 

given that we are at state s. 

V𝜋𝜋(s) is the value at state s when applying policy 𝜋𝜋. 

f(a, s, r) is used here as a shorthand for the Value function 

V(s). 

The use of f(a, s, r) is simply meant to reduce the complexity 

and emphasise the role of 𝜋𝜋(a|s). 

 

Upon assembling together, we achieve : 

 

 
 

 

APPLICATION DEVELOPMENT 

 

Application Development This section is dedicated to 

demonstrate the functionalities development process of 

learning using the reinforcement based algorithms applied 

from the Open-AI baselines packages and python’s gym, the 

first piece of code is just an attempt to create a base on which 

further improvementst can be made later on. Back-end 

Development Basic Setup The very first thing to do is to set 

up an Python application by creating 16 an open.py file, which 

is the entrance file of the project 

 

CHOOSING THE RIGHT ALGORITHM  

The first run of the application concluded that the parameters 

which can be configured that is the reward function has to be 

changed to make sure the model performs properly. A choice 

was first made to choose between a positive reward function 

and a negative reward function. 

 
Choosing between positive and negative reward function 

 

 
Reinforcement Learning Algorithms 

 

 
Reinforcement Learning Algorithm comparison in one diagram 

 
Reinforcement Learning comparison 

CHOOSING THE RIGHT TRAINING METHODOLOGY 
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Self play aka the model in a match versus itself, However it 

comes with a lot of caveats of its own. Below are some of the 

caveats and shortcomings of using self play 

i) Possible Overfitting 

ii) No effective play quality measure 

iii) No effective way to compare different sets of 

parameters 

 

A counter plan to improve upon this and to get rid of almost 

all downsides was however devised and was quickly taken 

into consideration, aka to have a tournaments and let the best 

models compete against each other, this approach however 

comes with another downside of taking more resources and 

hence a self play evolution Tournament was thought of in 

which  

Agents play against many strategies, this approach reduces the 

chances of overfitting but at the same time possibly introduce 

rating into the equation, but overall it is the way go when 

comparing 2 types of models. 

 

FINAL CONFIGURATION AND RESULTS 

 

The final convolutional neural network turned out as the 

following 

 

Input/Output 

-14 state dimensions (coordinates, velocities…) 

-10 actions (directions, space bar, “no action”) 

 

Implementation Details 

-Deep neural network: 4 layers X 128 neurons, (Tensorflow) 

-PPO2 algorithm (OpenAI) 

-Pre-training on self-play (400M frames on 10FPS) 

-Round-Robin tournament(~ 20 different models at a time) 

 

CONCLUSION 

 

The goal of this thesis was to study different characteristic of 

each technology available in the OpenAI-baselines repo and 

using that build a reinforcement learning system that can 

peform on par to an above average player and can outperform 

most of the the human players. The application was 

successfully developed at the end. A fully functional end-to-

end game replica was built and a methodologies were 

developed to successfully train the model. This application 

was meant to solve the problem that is mentioned in the first 

section of this thesis: to help devise a reinforcement learning 

system capable of outperforming an above average player. 

Overall, the thesis can be used as a tutorial or documentation 

of the openAI baselines, python gym and other libraries 

involved and has opened pathways for further research and 

development of applications in this field. Although the 

application still has some drawbacks and needs more further 

improvements, both in styling issue and new features, it is a 

combination of one of the most widely used artificial 

intelligence technology with one of the most emerging 

business ideas nowadays – Machine Learning 
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