

International Journal For Technological Research In Engineering

Volume 9, Issue 10, June-2022 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2022.All rights reserved. 79

IMPLEMENTATION OF A REINFORCEMENT LEARNING BOT

FOR GAME PROBLEM SOLVING

1
Sagnik Halde,

2
Parth Bhatia,

3
Jaipal Singh ,

4
Prof.Gurpreet Kaur

1,2,3
Students,

4
Assistant Professor

Bhagwan Mahaveer College of Engineering and Management, Sonipat, India

Abstract-This report is about studying the basic components

of Reinforcement Learning technology such as: Reward:

The reward is a scalar feedback signal which indicates how

well the agent is doing at step time t. In reinforcement

learning we need define our problem such that it can be

applied to satisfy our reward hypothesis. An example would

be playing a game of chess where the agent gets a positive

reward for winning a game and a negative reward for losing

a game. Reward Hypothesis: All goals can be described by

the maximisation of expected cumulative reward. Since our

process involves sequential decision making tasks, our

actions we make early on may have a long-term consequence

on our overall goal. Sometimes it may be better to sacrifice

immediate reward (reward at time step Rt) to gain more

long-term reward. An example applied to chess would be to

sacrifice a pawn to capture a rook at a later stage. Since

then, this topic is declared to research and create an online

game, Our project is modelled after the popular online

multiplayer game haxball. HaxBall is a physics-based

multiplayer soccer game where teamwork is key. In this

example however we are trying to build a model that is

capable of learning on how to play and become good enough

to beat other strong players in 1v1 matches. This model will

make use of python libraires like numpy, pandas, gym,

pygame and frameworks like Google’s TensorFlow and

OpenAI baselines to build a system that can be used to train

multiple models in parallel without the need of any manual

play

Introduction

Reinforcement Learning is a feedback-based Machine learning

technique in which an agent learns to behave in an

environment by performing the actions and seeing the results

of actions. For each good action, the agent gets positive

feedback, and for each bad action, the agent gets negative

feedback or penalty. In Reinforcement Learning, the agent

learns automatically using feedbacks without any labelled

data, unlike supervised learning. Since there is no labelled

data, so the agent is bound to learn by its experience only. RL

solves a specific type of problem where decision making is

sequential, and the goal is long-term, such as game-playing,

robotics, etc. The agent interacts with the environment and

explores it by itself. The primary goal of an agent in

reinforcement learning is to improve the performance by

getting the maximum positive rewards. The agent learns with

the process of hit and trial, and based on the experience, it

learns to perform the task in a better way. Hence, we can say

that "Reinforcement learning is a type of machine learning

method where an intelligent agent (computer program)

interacts with the environment and learns to act within that."

How a Robotic dog learns the movement of his arms is an

example of Reinforcement learning. It is a core part of

Artificial intelligence, and all AI agent works on the concept

of reinforcement learning. Here we do not need to pre-

program the agent, as it learns from its own experience

without any human intervention. Example: Suppose there is an

AI agent present within a maze environment, and his goal is to

find the diamond. The agent interacts with the environment by

performing some actions, and based on those actions, the state

of the agent gets changed, and it also receives a reward or

penalty as feedback. The agent continues doing these three

things (take action, change state/remain in the same state, and

get feedback), and by doing these actions, he learns and

explores the environment. The agent learns that what actions

lead to positive feedback or rewards and what actions lead to

negative feedback penalty. As a positive reward, the agent

gets a positive point, and as a penalty, it gets a negative 1

point. The objectives of this thesis were to illustrate and

understand the fundamental concepts and usage Fundamental

Concepts of Reinforcement Learning, as well as their

compatibilities and advantages as compared to other machine

learning algorithms. The thesis achieved that goal by

Increasing the level of abstraction, the scenario we’re

considering can be described as: a generic agent performs

actions inside an environment and receives feedback that is

somehow proportional to the competence of its actions.

According to this feedback, the agent can correct its actions in

order to reach a specific goal. This document structure was

organized as follow. The first section brought in the goal of

the thesis and technologies used. Next, essential concepts and

theoretical background of each technology in the stack was

introduced along with example, followed by the third section

which demonstrated carefully and thoroughly the application

development process, from back-end to front-end. In the end,

this paper provided discussion of the project with further

improvements and gave conclusion about the final product.

PROBLEM STATEMENT

The goal of this project is to implement a bot using Reinforced

Learning (DQN) in python using OPENAI baselines and other

python data science and simulation libraries that will surpass

an above average player in the popular football/air hockey

hybrid game haxball and be a proof of concept about the

application of reinforcement learning in other fields. The

Project will have to replicate haxball’s game system and then

devise methods that can be used to better train the model

International Journal For Technological Research In Engineering

Volume 9, Issue 10, June-2022 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2022.All rights reserved. 80

efficiently taking least resources possible for the operation.

The problem also involves finding the optimal algorithm that

can be used for the said problem and will make a comparative

analysis of the performances to set up benchmarks for future

use.

What is reinforcement Learning

Reinforcement learning is the training of machine learning

models to make a sequence of decisions. The agent learns to

achieve a goal in an uncertain, potentially complex

environment. In reinforcement learning, an artificial

intelligence faces a game-like situation. The computer

employs trial and error to come up with a solution to the

problem. To get the machine to do what the programmer

wants, the artificial intelligence gets either rewards or

penalties for the actions it performs. Its goal is to maximize

the total reward. Although the designer sets the reward policy–

that is, the rules of the game–he gives the model no hints or

suggestions for how to solve the game. It’s up to the model to

figure out how to perform the task to maximize the reward,

starting from totally random trials and finishing with

sophisticated tactics and superhuman 2 skills. By leveraging

the power of search and many trials, reinforcement learning is

currently the most effective way to hint machine’s creativity.

In contrast to human beings, artificial intelligence can gather

experience from thousands of parallel gameplays if a

reinforcement learning algorithm is run on a sufficiently

powerful computer infrastructure. Examples of reinforcement

learning Applications of reinforcement learning were in the

past limited by weak computer infrastructure. However, as

Gerard Tesauro’s backgamon AI superplayer developed in

1990’s shows, progress did happen. That early progress is now

rapidly changing with powerful new computational

technologies opening the way to completely new inspiring

applications. Training the models that control autonomous

cars is an excellent example of a potential application of

reinforcement learning. In an ideal situation, the computer

should get no instructions on driving the car. The programmer

would avoid hard-wiring anything connected with the task and

allow the machine to learn from its own errors. In a perfect

situation, the only hard-wired element would be the reward

function. For example, in usual circumstances we would

require an autonomous vehicle to put safety first, minimize

ride time, reduce pollution, offer passengers comfort and obey

the rules of law. With an autonomous race car, on the other

hand, we would emphasize speed much more than the driver’s

comfort. The programmer cannot predict everything that could

happen on the road. Instead of building lengthy “if-then”

instructions, the programmer prepares the reinforcement

learning agent to be capable of learning from the system of

rewards and penalties. The agent (another name for

reinforcement learning algorithms performing the task) gets

rewards for reaching specific goals.

Pros of Reinforcement Learning

• Reinforcement learning can be used to solve very

complex problems that cannot be solved by conventional

techniques.

• This technique is preferred to achieve long-term

results, which are very difficult to achieve.

• This learning model is very similar to the learning of

human beings. Hence, it is close to achieving perfection.

• The model can correct the errors that occurred during

the training process.

• Once an error is corrected by the model, the chances

of occurring the same error are very less.

• It can create the perfect model to solve a particular

problem.

• Robots can implement reinforcement learning

algorithms to learn how to walk.

• In the absence of a training dataset, it is bound to

learn from its experience.

• Reinforcement learning models can outperform

humans in many tasks. DeepMind’s AlphaGo program, a

reinforcement learning model, beat the world champion Lee

Sedol at the game of Go in March 2016.

• Reinforcement learning is intended to achieve the

ideal behavior of a model within a specific context, to

maximize its performance.

• It can be useful when the only way to collect

information about the environment is to interact with it.

• Reinforcement learning algorithms maintain a

balance between exploration and exploitation. Exploration is

the process of trying different things to see if they are better

than what has been tried before. Exploitation is the process of

trying the things that have worked best in the past. Other

learning algorithms do not perform this balance.

Cons of Reinforcement Learning

• Reinforcement learning as a framework is wrong in

many different ways, but it is precisely this quality that makes

it useful.

• Too much reinforcement learning can lead to an

overload of states, which can diminish the results.

• Reinforcement learning is not preferable to use for

solving simple problems.

• Reinforcement learning needs a lot of data and a lot

of computation. It is data-hungry. That is why it works really

well in video games because one can play the game again and

again and again, so getting lots of data seems feasible.

• Reinforcement learning assumes the world is

Markovian, which it is not. The Markovian model describes a

sequence of possible events in which the probability of each

event depends only on the state attained in the previous event.

International Journal For Technological Research In Engineering

Volume 9, Issue 10, June-2022 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2022.All rights reserved. 81

• The curse of dimensionality limits reinforcement

learning heavily for real physical systems. According to

Wikipedia, the curse of dimensionality refers to various

phenomena that arise when analyzing and organizing data in

high-dimensional spaces that do not occur in low-dimensional

settings such as the three-dimensional physical space of

everyday experience.

• Another disadvantage is the curse of real-world

samples. For example, consider the case of learning by robots.

The robot hardware is usually very expensive, suffers from

wear and tear, and requires careful maintenance. Repairing a

robot system is costs a lot.

• To solve many problems of reinforcement learning,

we can use a combination of reinforcement learning with other

techniques rather than leaving it altogether. One popular

combination is Reinforcement learning with Deep Learning.

Difference between Reinforcement Learning and Deep

Learning

The main difference between reinforcement learning and deep

learning is this: Deep learning is the process of learning from

a training set and then applying that learning to a new data set.

But reinforcement learning is the process of dynamically

learning by adjusting actions based on continuous feedback to

maximize a reward.

Deep learning makes use of the existing available data and

uses that data to predict patterns. Reinforcement learning can

learn from its experience through trial and error.

Applications of Reinforcement Learning

A variety of problems can be solved using reinforcement

learning. Some of them are game-playing, robotics, and many

other fields.

As I mentioned earlier, reinforcement learning is the best

technology used for game playing. It can even beat world

champions.

Reinforcement learning can be used effectively to determine

the best move to make in a game, depending on several

different factors. It is very handy in games like Chess, Go, etc.

Using reinforcement learning, we can improve and personalize

the gaming experience in real-time. It is the algorithm that can

solve different games and sometimes achieve super-human

performance.

This technology is used for the learning of robots. Robots are

trained using the trial and error method with human

supervision. Reinforcement learning teaches robots new tasks

while retaining prior knowledge.

E-commerce websites like Amazon can use reinforcement

learning to solve their problems to generate the maximum

revenue by displaying the most relevant ads to interested

buyers.

Self-driving cars also implement some reinforcement learning

algorithms. Reinforcement learning can also be applied to

optimizing chemical reactions

RESEARCH AND DEVELOPMENT

There were many applications for constructing a

reinforcement learning bot, and we used OpenAI baselines

and py gym technologies to develop a bot in this study. The

libraries being used to handle the training data and process it

are standard data science libraries like Numpy, Pandas and

Tensorflow. These libraries provide a well documented set of

tools that can be used to process n-dimensional at superb

speeds.

MATH BEHIND REINFORCEMENT LEARNING

States & Rewards

Let’s consider a sequence of states S1, S2, …, Sn each of

them has some kind of reward R1, R2,…,Rn. An agent has the

job to maximise its total reward. It will choose the states-path

that provides the maximum rewards.

Suppose the agent is at a random state, there should be a way

for it to know what is the best path that maximises its reward.

The challenge here being that the agent does not see beyond

its immediate neighbouring states. Thus, in addition to the

reward of each state S, we are also going to store V.

V represents rewards of other states to which each state is

connected to.

Example, V1 represents the total rewards of all the states

connected to S1. The reward R1 is not part of V1. But the

reward R2 at S2 is part of V1 at S1.

This way by simply looking at the next state, the agent will

have an idea what lays behind.

The value V stored at state S is computed via a function called

“Value Function”. The Value function computes the future

rewards. The final states, also called terminal states, do not

have value V since there are no future states or rewards.

The Importance of States & Rewards in Reinforced Learning

This will create a sequence of increasing V from the origin till

the end, which constitutes a hint to the agent on which

direction maximises its reward. So, V(s), the Value Function

returns the future rewards coming from other states.

Here, St are all the states that are connected directly or

indirectly to S. Computationally it becomes more efficient to

calculate V(s) (current state) when we know the V(s’) next

states, instead of summing all the rewards of all future states.

The Equation now becomes :

International Journal For Technological Research In Engineering

Volume 9, Issue 10, June-2022 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2022.All rights reserved. 82

So far we have assumed that all states are connected in

sequence, however this is rarely the case, each state can be

connected to multiple other states to which the agent can

potentially move to. Let S1 be connected to S2, S3, S4, and

S5, the value V at S1 should reflect this situation.

V(S1) is the average of all values of states to which it is

connected. This suggests that from S1 we can go to S2, S3,

S4, and S5 without any preference to any particular state.

This is not accurate, because we know that there is a certain

probability to go to each neighbour state and these

probabilities might not be the same.

Lets call these probabilities p2, p3, p4, p5 respectively. So

V(S1) becomes

These probabilities are called transition probabilities and they

express the likelihood of transitioning from one state to

another. To express them as a matrix P where Pij is the

probability of transition from a state i to a state j. When no

transition is possible the Pij will be zero. We now have

transformed the equation to :

Here P(Sk|S) is the probability of reaching state Sk knowing

our current state.

Stochastic Rewards

The reward itself is not deterministic, which means you can’t

assume that R is precisely known at every state. In fact it is

probabilistic and can take different values. Consider the aim

on a target, we will suppose there are only three states, S1

(aiming), S2 (hit), S3 (miss).

Thus the probability in such a case won’t be uniform.

So the value at state S1 will be :

Since S2 and S3 are terminal states, then V(S1) and V(S2) are

zero, but they are mentioned above to keep reminding of the

general formula.

The rewards in every state are multiplied, then summed

together and each state is multiplied by the transition

probability that leads to it.

International Journal For Technological Research In Engineering

Volume 9, Issue 10, June-2022 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2022.All rights reserved. 83

From the above we can deduce the general formula:

Here, p(si, rj|s) is read as the probability of transiting from

state s to si with a reward rj. We can thereby generalize and

state

Actions and Policy

The probability of going from state s after performing action

a, to the state s’ and getting reward r is not 100%. That’s why

we write p(s’,r|s, a) which is the probability of transiting to

state s’ with reward r given a state s and an action a.

The strategy that dictates which action to use at a certain state

is called policy. As usual we quantify this in the V(s) by

averaging all these possibilities.

(a|s) is the probability of using action a following the policy 𝜋

given that we are at state s.

V𝜋𝜋(s) is the value at state s when applying policy 𝜋𝜋.

f(a, s, r) is used here as a shorthand for the Value function

V(s).

The use of f(a, s, r) is simply meant to reduce the complexity

and emphasise the role of 𝜋𝜋(a|s).

Upon assembling together, we achieve :

APPLICATION DEVELOPMENT

Application Development This section is dedicated to

demonstrate the functionalities development process of

learning using the reinforcement based algorithms applied

from the Open-AI baselines packages and python’s gym, the

first piece of code is just an attempt to create a base on which

further improvementst can be made later on. Back-end

Development Basic Setup The very first thing to do is to set

up an Python application by creating 16 an open.py file, which

is the entrance file of the project

CHOOSING THE RIGHT ALGORITHM

The first run of the application concluded that the parameters

which can be configured that is the reward function has to be

changed to make sure the model performs properly. A choice

was first made to choose between a positive reward function

and a negative reward function.

Choosing between positive and negative reward function

Reinforcement Learning Algorithms

Reinforcement Learning Algorithm comparison in one diagram

Reinforcement Learning comparison

CHOOSING THE RIGHT TRAINING METHODOLOGY

International Journal For Technological Research In Engineering

Volume 9, Issue 10, June-2022 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2022.All rights reserved. 84

Self play aka the model in a match versus itself, However it

comes with a lot of caveats of its own. Below are some of the

caveats and shortcomings of using self play

i) Possible Overfitting

ii) No effective play quality measure

iii) No effective way to compare different sets of

parameters

A counter plan to improve upon this and to get rid of almost

all downsides was however devised and was quickly taken

into consideration, aka to have a tournaments and let the best

models compete against each other, this approach however

comes with another downside of taking more resources and

hence a self play evolution Tournament was thought of in

which

Agents play against many strategies, this approach reduces the

chances of overfitting but at the same time possibly introduce

rating into the equation, but overall it is the way go when

comparing 2 types of models.

FINAL CONFIGURATION AND RESULTS

The final convolutional neural network turned out as the

following

Input/Output

-14 state dimensions (coordinates, velocities…)

-10 actions (directions, space bar, “no action”)

Implementation Details

-Deep neural network: 4 layers X 128 neurons, (Tensorflow)

-PPO2 algorithm (OpenAI)

-Pre-training on self-play (400M frames on 10FPS)

-Round-Robin tournament(~ 20 different models at a time)

CONCLUSION

The goal of this thesis was to study different characteristic of

each technology available in the OpenAI-baselines repo and

using that build a reinforcement learning system that can

peform on par to an above average player and can outperform

most of the the human players. The application was

successfully developed at the end. A fully functional end-to-

end game replica was built and a methodologies were

developed to successfully train the model. This application

was meant to solve the problem that is mentioned in the first

section of this thesis: to help devise a reinforcement learning

system capable of outperforming an above average player.

Overall, the thesis can be used as a tutorial or documentation

of the openAI baselines, python gym and other libraries

involved and has opened pathways for further research and

development of applications in this field. Although the

application still has some drawbacks and needs more further

improvements, both in styling issue and new features, it is a

combination of one of the most widely used artificial

intelligence technology with one of the most emerging

business ideas nowadays – Machine Learning

References

 1 “Proximal Policy Optimization from” OpenAI-baselines ,

OpenAI 2022. San Francisco, California, Pioneer Building,

San Francisco, California, US https://beta.openai.com

 2 TensorFlow 2.0 2022 “An end-to-end open source machine

learning platform” https://www.tensorflow.org/

3 Cython optimising static compiler for both the Python

programming language and the extended Cython

programming language https://cython.readthedocs.io/en

4 Python Python is a high-level, general-purpose

programming language https://www.python.org/

 5 Keras open-source software library that provides a Python

interface for artificial neural networks. Keras acts as an

interface for the TensorFlow library https://keras.io/

6 Numpy library for the Python programming language,

adding support for large, multi-dimensional arrays and

matrices, along with a large collection of high-level

mathematical functions to operate on these arrays

https://numpy.org/

 7 Pandas, software library written for the Python

programming language for data manipulation and analysis. In

particular, it offers data structures and operations for

manipulating numerical tables and time series

https://pandas.pydata.org/

