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Abstract- An event is a significant occurrence or large-scale 

activity that is unusual relative to normal patterns of 

behavior. May be associated with naturally occurring 

phenomena and manual system interactions Event detection 

is the process of analyzing event streams in order to discover 

sets of events matching patterns of events in an event 

context. Event detection is a subfield of computer vision that 

analyzes input videos with the goal of determining when a 

particular anomalous event has occurred.  

In streaming data is an event is a fundamental unit of data. 

A time-correlated event pattern is a collection of 

occurrences. Human-computer interaction, surveillance, 

intelligent transportation systems, and space exploration are 

only some of the uses of event detection based on continuous 

media [1]. The process of studying event streams in order to 

uncover collections of events matching patterns of events in 

an event context is known as event detection. Event kinds are 

defined by event patterns and circumstances.   
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1. INTRODUCTION 
Subscribers to an event type should be notified if a set of 

events matching the pattern of the event type is detected 

during the analysis. Filtering and aggregation of events are 

usually part of the analysis. Machine learning has been heavily 

incorporated into state-of-the-art recognition systems [1,2]. 

The convolutional neural network (CNN), a multi-layer neural 

network, is a biologically inspired deep learning model. CNN 

can learn discriminative features automatically, unlike 

previous machine learning algorithms that rely on 

sophisticated handcrafted features. This network model may 

be applied directly to the original image and can extract 

classification features for image classification automatically, 

eliminating the complexity and blindness of traditional image 

classification. CNN, on the other hand, may be appropriate 

only in specific circumstances 

 

We use a spatiotemporal convolutional neural network model 

(STCNN) to extract image features on the spatial dimension 

and motion information on the temporal dimension from 

successive continuous media frames to produce a sparse 

representation to analyse time serial dynamic continuous 

media images. The sparse auto-encoder (SA) is an 

unsupervised deep learning model that imposes sparse 

constraints on the training of each auto-encoder layer using 

the sparse coding concept [4-7, 13,14]. To improve STCNN, 

we use a sparse auto-combination technique inspired by the 

sparse auto-encoder algorithm to combine input feature maps 

to which a type of sparsity limitation is enforced at the 

convolution stage. As a result, the convolution layer can learn 

the best combination of feature maps. 

 

Sensors, networks, and electronic technologies are rapidly 

developing, resulting in an explosion of continuous media 

data. This has a significant detrimental impact on the 

convolutional neural network's training speed for a certain 

task. As a result, parallel processing of large-scale data from 

image sensors has emerged as a critical issue to be addressed. 

The storage and processing of such enormous amounts of data 

could not be done on a regular PC or supercomputer. Some 

researchers have made numerous attempts to expand machine 

learning into large-scale Hadoop applications in order to mine 

possible information from massive amounts of data.   

 

Sensors, Hadoop is a prominent cloud computing platform 

that is based on an open source implementation of the 

MapReduce methodology. The hardware requirements aren't 

excessive. Hadoop may be installed on multiple common PCs 

to create a strong distributed cluster. Combining distributed 

computing and machine learning will become a significant 

machine learning growth direction in the context of Big Data.   

 

The AC-CNN is a sparse Auto-Combination spatio-temporal 

Convolutional Neural Network that can automatically learn 

advanced characteristics of continuous media data, according 

to this dissertation. Large-scale data mining is well-suited to 

it. We parallelize AC-CNN on a Hadoop cluster called AC-

CNN-MR, which stands for AC-CNN with MapReduce, in 

order to increase its classification ability and mine the main 

elements of the action from large scale continuous media data 

[9,10,17].   

 

2. CONVOLUTIONAL NEURAL NETWORK 
 

 The Convolution Neural Network is a Neural 

Network model that focuses on streaming data analysis for 

applications such as image categorization and object detection. 

CNNs, or Convolutional Neural Networks, have shown to be 

an effective method for streaming data processing under Deep 

Learning, alongside other Neural Network algorithms such as 

Standard Neural Network, Recurrent Neural Network, and 

Hybrid Neural Network. So far, the Convolutional Neural 

Network has been the most widely used method for stream 
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data analysis.   

 

CNNs are most commonly employed for image analysis, but 

they may also be utilised for data analysis and classification 

challenges [28, 31,40-43]. The Convolutional Neural Network 

is based on the principle of filtering images before training a 

deep neural network. As previously said, a Convolutional 

Neural System is a type of deep learning strategy that has been 

popular in a variety of computer vision tasks and is gaining 

popularity in a variety of fields, including radiology.  . 

 

 

3. AC-CNN FOR EVENT DETECTION 
We take 6 successive 3230 size frames as the input of the AC-

CNN in the aforesaid architecture to capture motion 

information encoded in multiple contiguous continuous media 

frames, taking the current frame as the centre. Assume the 

input frames are all grayscale images of 32x32 pixels. If the 

sizes differ, the scaling procedure must be used to convert 

them to 32-bit sizes.  

 

Using a 756 convolution kernel, the C1 layer can extract 36 

feature maps from seven consecutive input frames, which 

means using 26 distinct learnable convolution kernels to 

extract 26 different features. Despite the fact that event 

classification is based on a large number of complex 

characteristics, 26 feature maps produced from the input 

frames are perfectly capable of classifying the simple action. 

 

A subsampling layer is the S1. Its goal is to scale the C1 

layer's acquired feature maps, which will improve the ER-

resistance CNN's to scale changes and minor deformation. The 

sub-sampling layer's scaling factor can't be too large. We 

wouldn't be able to extract useful features from the raw image 

data if this wasn't the case. The C1 layer's thirty-six 3030 size 

feature maps are uniformly scaled, resulting in thirty-six 1010 

feature maps as the output of the S1 layer.   

 

We take 6 consecutive 32x32 size frames as the input of the 

AC-CNN in information encoded in multiple contiguous 

continuous media frames, with the current frame as the centre. 

Assume that all of the input frames are grayscale images of 

32x32 pixels. If the sizes differ, the scaling procedure must be 

used to convert them to 3232 sizes.  

 

The C1 layer can generate 36 feature maps from seven 

successive input frames using the 756 convolution kernel, 

meaning that 28 different learnable convolution kernels were 

employed to extract 28 different features. Despite the fact that 

event classification is reliant on a large number of complicated 

attributes, the 28 feature maps generated from the input frames 

are more than adequate of categorising a simple action. 

Because of its magnitude, the convolution is quite enormous.  

 

The S2 layer is a sub-sampling layer, comparable to the S1 

layer. We may get two sets of feature maps, each with thirty-

four 101 size feature maps, by multiplying the scaling factor 

by two.  

 

Convolutional layers are also present in the C3 layer. It 

convolutions two groups of feature maps from the S2 layer 

with a 25.5 size convolution kernel, resulting in two sets of 

feature figures, each with thirty-two 88.5 size feature maps. 

This convolution kernel is 606 times larger than the preceding 

one, which was 55. The most important argument is that a 

sub-sampling layer is simple to understand.  The size of the 

resulting feature map is 99.2 percentage, if we utilise a 32% 

size convolution kernel. We can't use the scaling factor 4 for 

sub-sampling because nine isn't even. The result of the C3 

layer can then be used to blend 32 feature maps into a single 

group.  

 

The S3 layer is followed by the F layer, which is a fully 

connected layer. The completely connected state denotes that 

each S3 layer neuron is coupled to each F layer neuron, 

resulting in a generic neural network. Actually, we can join all 

of the S3 layer's neurons as a network layer with 1800 

neurons, and then we can connect all of the S3 layer's neurons 

to the F layer, which has sixty-four neurons. As a result, the 

S3 layer and the F layer have a total of 122032 connections.  

 

After the F layer, the ultimate output layer is a fully connected 

layer. The number of its neurons represents the number of 

events that can be recognised.  

  

MapReduce Implementation of Matrix Multiplication  

 

The AC-CNN training process is a continuous iteration 

procedure, with each iteration heavily reliant on the findings 

of the prior iteration. It is not suited for parallelization on the 

framework utilising MapReduce. However, each repetition is 

actually a matrix multiplication. The Algorithm 1 is a 

MapReduce-based global AC-CNN training system. 

 
Each sample is utilised to keep it up to date. We use 

MapReduce parallelization for forward propagation and error 

back propagation when updating. We propose a matrix 

parallel computing approach based on MapReduce to expedite 

the training of SATCNN using MapReduce. Assume you have 

two matrices, Amt and Btn. The usual algorithm for 

calculating Cmn=AB is as follows:    
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The above algorithm has a temporal complexity of T=O. 

(mnk). It's the same as the cubic level calculation amount. 

This is a time-consuming procedure. As a result, we can 

submit various Ci,j calculations to separate machines for 

parallel processing. As a result, we create a MapReduce-based 

parallel matrix multiplication technique.   

 

We solve Cmn=AB given the matrices Amt and Btn. Given 

that the MapReduce process accepts a file containing Key 

Value Pair and I and j denote the element's index subscript. If 

the value of M13 is 7, for example, it is recorded as 'M125.' 

We develop the Map and Reduce processes as described in 

Algorithm based on the aforementioned premise. 

 
 

The Map process simply copies the elements of A and B, 

which are then sent to the Reduce process to be calculated. 

Each of A's elements, Ai, j, must be multiplied by Bj,c (c=1, 

2,..., n). Ci, c will result from the addition of Ai, j*Bj, c. As a 

result, the term I c) is utilised to identify. It will yield m*t*n 

elements in the end. Every element of B, Bi, j, must be 

multiplied by Ar,i (r=1, 2,..., m). Ar, i*Bi, j will add up to Cr,j 

(r, j), which is utilised as an identification keyword. It will 

eventually yield t*n*m components. The key, value>, which is 

the same as keyword, is used during the shuffling phase.   

 

The Map and Reduce functions on Hadoop can be regarded 

the smallest parallel execution units. We'll look at the time 

complexity of the algorithm if the aforesaid application is 

running in a distributed cluster of p computers. Because each 

Map function has an O(n) time complexity, when p = 

max(mt/p,1), the mt Map functions can be distributed to a 

maximum of mt machines.    

 

It must run mn Reduce routines throughout the Reduce phase. 

Each Reduce function has an O time complexity (t).  As a 

result, the Reduce phase's overall time complexity is 

O(max(mn/p, 1)t. During the MapReduce process, the time 

cost of network transmission and the cost of file reading and 

writing are not taken into account in the above study. There 

may be significant variances during the experiment process 

due to the various circumstances.   

 

Because of AC-CNN imposes sparse constraints on the 

network, most matrices formed of parameters are sparse as 

well. We can make the matrix multiplication above even 

better. At initially, we just store nonzero elements while 

saving the matrix. 

 
Since, the Map phase only duplicates the elements, the file 

already contains a sparse matrix. There is no need to update 

the Map function. If the corresponding position elements of A 

and B are both nonzero, it just has to perform multiplication 

during the Reduce phase, and it only needs to write the results 

if the corresponding position element of C is nonzero. The 

aforementioned strategy can improve the algorithm's 

efficiency even further when the matrix is sparse. 
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4. EVENT DETECTION 
The standard data set namely KTH is often used to test the 

performance of algorithms for event recognition. It is 

compiled by nine people and contains ten different sorts of 

events.   

 

Table 3: Comparison of obtained results with other methods 

 
It should be mentioned that they cannot be directly compared 

due to the fact that they employ two separate methodologies. 

In our method and literature, each continuous media clip is 

treated as a separate unit and given an event label [11]. The 

feature is calculated using a temporal window in the 

literatures, but a label is only allocated to the centre frame of 

the window. Each continuous media clip, which consists of 

ten frames. JHUANG [30] retrieves the features from each of 

the nine frames in the sequence. Although the proposed 

method recognition rate isn't the best in the best-case scenario.    

 

5. PERFORMANCE OF MAPREDUCE ALGORITHM 

FOR EVENT DETECTION 

Both KTH and related data sets were used in the trials to 

validate the validity of AC-CNN-MR after employing Hadoop 

MapReduce. The results of the parallel experiment were 

compared to the results of the serial experiment. The 

experiment was performed 81 times. Finally, we calculated an 

average of all the results. Figure 16 shows that the ability of 

ER-MR is nearly identical to the ability of AC-CNN.   

 
Figure 16: Accuracy of AC-CNN and SASTCNN on the KTH 

dataset. 

 

This demonstrates the method's portability and verifies the 

feasibility and correctness of AC-CNN-MR parallelization in 

this dissertation. We use the same settings for the KTH data 

set as we did before. The 5 fold cross-validation approach is 

used for all experiment assessments in the KTH data set, 

which means that all samples are randomly divided into 5 

groups of equal size. One data set is chosen at random as the 

testing set, while the others are used as training sets. This 

technique was repeated five times, with the average of the five 

experiments provided. The comparison trials on the KTH data 

set, as shown in Figure 17, also corroborate the validity of the 

AC-CNN-MR algorithm. 

 
Figure 17: The accuracy of AC-CNN-MR and SASTCNN on 

the KTH dataset.  

 

We examined the training and testing times of AC-CNN and 

AC-CNN-MR, respectively, to analyse the speed-up ratio after 

AC-CNN-MR parallelization. The AC-CNN training and 

testing times correspond to the time it takes to run AC-CNN-

MR on a single machine with Hadoop. We retrieved a 

continuous media segment of 81 samples from the KTH data 

set. We also replicated each of them 100 times, yielding a total 

of 8100 samples. The data samples were trained ten times and 

the training time results were averaged. We tested 900 

samples at random and repeated the process ten times.   

 

We created 65000 samples in total using the same 

experimental procedure on the KTH data set. A total of 10,500 

samples were picked at random for the testing set. The 

training and testing processes are separated because they have 

substantial differences. For example, the training process can 

only accelerate the matrix operation, whereas the testing 

process can fully accelerate each testing sample. The results 

are shown in Table 4, which show that the speed-up ratio is 

not very high. 

Table 4: A comparison of the computational costs. 

 
 

The theoretical speed-up ratio for a Hadoop cluster with three 

machines is three, although the actual speed-up ratios are 

significantly less than three. The cause for this is most likely 

due to network transmission delays and reading and writing 

data taking up the majority of the time. The speed-up ratio of 

the training process is too low, which is due to the fact that the 

training process primarily relies on the matrix operation to 

accelerate, and because the matrix size is not very large, the 

network transmission delay overwhelms the matrix parallel 

algorithm's acceleration effect. The testing process has a 

higher speed-up ratio than the training process since it 
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involves the Map process whereas the training process does 

not.  

 

6. CONCLUSION 
In this research study, we have introduced AC-CNN-MR, 

which parallelizes matrix multiplication using Hadoop 

MapReduce. The AC-CNN-MR algorithm was first 

implemented on a Hadoop cluster. On both systems, the 

performance of AC-CNN-MR was examined, and the 

experimental findings were analysed in terms of accuracy and 

computation efficiency.  
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