

International Journal For Technological Research In Engineering

Volume 10, Issue 1, September-2022 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2022.All rights reserved. 12

PERFORMANCE ANALYSIS OF MAPREDUCE BASED CONVOLUTIONAL

NEURAL NETWORKS FOR EVENT DETECTION IN STREAMING DATA

1
Puja Kumari,

2
Dr. Mukesh Kumar

1
Research Scholar,

2
HOD & Assistant Professor

Department of Computer Science & Engineering

Rabindranath Tagore University, Raisen, Madhya Pradesh, India

Abstract- An event is a significant occurrence or large-scale

activity that is unusual relative to normal patterns of

behavior. May be associated with naturally occurring

phenomena and manual system interactions Event detection

is the process of analyzing event streams in order to discover

sets of events matching patterns of events in an event

context. Event detection is a subfield of computer vision that

analyzes input videos with the goal of determining when a

particular anomalous event has occurred.

In streaming data is an event is a fundamental unit of data.

A time-correlated event pattern is a collection of

occurrences. Human-computer interaction, surveillance,

intelligent transportation systems, and space exploration are

only some of the uses of event detection based on continuous

media [1]. The process of studying event streams in order to

uncover collections of events matching patterns of events in

an event context is known as event detection. Event kinds are

defined by event patterns and circumstances.

Keywords—Convolutional Neural Network (CNN) , hadoop,

1. INTRODUCTION
Subscribers to an event type should be notified if a set of

events matching the pattern of the event type is detected

during the analysis. Filtering and aggregation of events are

usually part of the analysis. Machine learning has been heavily

incorporated into state-of-the-art recognition systems [1,2].

The convolutional neural network (CNN), a multi-layer neural

network, is a biologically inspired deep learning model. CNN

can learn discriminative features automatically, unlike

previous machine learning algorithms that rely on

sophisticated handcrafted features. This network model may

be applied directly to the original image and can extract

classification features for image classification automatically,

eliminating the complexity and blindness of traditional image

classification. CNN, on the other hand, may be appropriate

only in specific circumstances

We use a spatiotemporal convolutional neural network model

(STCNN) to extract image features on the spatial dimension

and motion information on the temporal dimension from

successive continuous media frames to produce a sparse

representation to analyse time serial dynamic continuous

media images. The sparse auto-encoder (SA) is an

unsupervised deep learning model that imposes sparse

constraints on the training of each auto-encoder layer using

the sparse coding concept [4-7, 13,14]. To improve STCNN,

we use a sparse auto-combination technique inspired by the

sparse auto-encoder algorithm to combine input feature maps

to which a type of sparsity limitation is enforced at the

convolution stage. As a result, the convolution layer can learn

the best combination of feature maps.

Sensors, networks, and electronic technologies are rapidly

developing, resulting in an explosion of continuous media

data. This has a significant detrimental impact on the

convolutional neural network's training speed for a certain

task. As a result, parallel processing of large-scale data from

image sensors has emerged as a critical issue to be addressed.

The storage and processing of such enormous amounts of data

could not be done on a regular PC or supercomputer. Some

researchers have made numerous attempts to expand machine

learning into large-scale Hadoop applications in order to mine

possible information from massive amounts of data.

Sensors, Hadoop is a prominent cloud computing platform

that is based on an open source implementation of the

MapReduce methodology. The hardware requirements aren't

excessive. Hadoop may be installed on multiple common PCs

to create a strong distributed cluster. Combining distributed

computing and machine learning will become a significant

machine learning growth direction in the context of Big Data.

The AC-CNN is a sparse Auto-Combination spatio-temporal

Convolutional Neural Network that can automatically learn

advanced characteristics of continuous media data, according

to this dissertation. Large-scale data mining is well-suited to

it. We parallelize AC-CNN on a Hadoop cluster called AC-

CNN-MR, which stands for AC-CNN with MapReduce, in

order to increase its classification ability and mine the main

elements of the action from large scale continuous media data

[9,10,17].

2. CONVOLUTIONAL NEURAL NETWORK

 The Convolution Neural Network is a Neural

Network model that focuses on streaming data analysis for

applications such as image categorization and object detection.

CNNs, or Convolutional Neural Networks, have shown to be

an effective method for streaming data processing under Deep

Learning, alongside other Neural Network algorithms such as

Standard Neural Network, Recurrent Neural Network, and

Hybrid Neural Network. So far, the Convolutional Neural

Network has been the most widely used method for stream

International Journal For Technological Research In Engineering

Volume 10, Issue 1, September-2022 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2022.All rights reserved. 13

data analysis.

CNNs are most commonly employed for image analysis, but

they may also be utilised for data analysis and classification

challenges [28, 31,40-43]. The Convolutional Neural Network

is based on the principle of filtering images before training a

deep neural network. As previously said, a Convolutional

Neural System is a type of deep learning strategy that has been

popular in a variety of computer vision tasks and is gaining

popularity in a variety of fields, including radiology. .

3. AC-CNN FOR EVENT DETECTION
We take 6 successive 3230 size frames as the input of the AC-

CNN in the aforesaid architecture to capture motion

information encoded in multiple contiguous continuous media

frames, taking the current frame as the centre. Assume the

input frames are all grayscale images of 32x32 pixels. If the

sizes differ, the scaling procedure must be used to convert

them to 32-bit sizes.

Using a 756 convolution kernel, the C1 layer can extract 36

feature maps from seven consecutive input frames, which

means using 26 distinct learnable convolution kernels to

extract 26 different features. Despite the fact that event

classification is based on a large number of complex

characteristics, 26 feature maps produced from the input

frames are perfectly capable of classifying the simple action.

A subsampling layer is the S1. Its goal is to scale the C1

layer's acquired feature maps, which will improve the ER-

resistance CNN's to scale changes and minor deformation. The

sub-sampling layer's scaling factor can't be too large. We

wouldn't be able to extract useful features from the raw image

data if this wasn't the case. The C1 layer's thirty-six 3030 size

feature maps are uniformly scaled, resulting in thirty-six 1010

feature maps as the output of the S1 layer.

We take 6 consecutive 32x32 size frames as the input of the

AC-CNN in information encoded in multiple contiguous

continuous media frames, with the current frame as the centre.

Assume that all of the input frames are grayscale images of

32x32 pixels. If the sizes differ, the scaling procedure must be

used to convert them to 3232 sizes.

The C1 layer can generate 36 feature maps from seven

successive input frames using the 756 convolution kernel,

meaning that 28 different learnable convolution kernels were

employed to extract 28 different features. Despite the fact that

event classification is reliant on a large number of complicated

attributes, the 28 feature maps generated from the input frames

are more than adequate of categorising a simple action.

Because of its magnitude, the convolution is quite enormous.

The S2 layer is a sub-sampling layer, comparable to the S1

layer. We may get two sets of feature maps, each with thirty-

four 101 size feature maps, by multiplying the scaling factor

by two.

Convolutional layers are also present in the C3 layer. It

convolutions two groups of feature maps from the S2 layer

with a 25.5 size convolution kernel, resulting in two sets of

feature figures, each with thirty-two 88.5 size feature maps.

This convolution kernel is 606 times larger than the preceding

one, which was 55. The most important argument is that a

sub-sampling layer is simple to understand. The size of the

resulting feature map is 99.2 percentage, if we utilise a 32%

size convolution kernel. We can't use the scaling factor 4 for

sub-sampling because nine isn't even. The result of the C3

layer can then be used to blend 32 feature maps into a single

group.

The S3 layer is followed by the F layer, which is a fully

connected layer. The completely connected state denotes that

each S3 layer neuron is coupled to each F layer neuron,

resulting in a generic neural network. Actually, we can join all

of the S3 layer's neurons as a network layer with 1800

neurons, and then we can connect all of the S3 layer's neurons

to the F layer, which has sixty-four neurons. As a result, the

S3 layer and the F layer have a total of 122032 connections.

After the F layer, the ultimate output layer is a fully connected

layer. The number of its neurons represents the number of

events that can be recognised.

MapReduce Implementation of Matrix Multiplication

The AC-CNN training process is a continuous iteration

procedure, with each iteration heavily reliant on the findings

of the prior iteration. It is not suited for parallelization on the

framework utilising MapReduce. However, each repetition is

actually a matrix multiplication. The Algorithm 1 is a

MapReduce-based global AC-CNN training system.

Each sample is utilised to keep it up to date. We use

MapReduce parallelization for forward propagation and error

back propagation when updating. We propose a matrix

parallel computing approach based on MapReduce to expedite

the training of SATCNN using MapReduce. Assume you have

two matrices, Amt and Btn. The usual algorithm for

calculating Cmn=AB is as follows:

International Journal For Technological Research In Engineering

Volume 10, Issue 1, September-2022 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2022.All rights reserved. 14

The above algorithm has a temporal complexity of T=O.

(mnk). It's the same as the cubic level calculation amount.

This is a time-consuming procedure. As a result, we can

submit various Ci,j calculations to separate machines for

parallel processing. As a result, we create a MapReduce-based

parallel matrix multiplication technique.

We solve Cmn=AB given the matrices Amt and Btn. Given

that the MapReduce process accepts a file containing Key

Value Pair and I and j denote the element's index subscript. If

the value of M13 is 7, for example, it is recorded as 'M125.'

We develop the Map and Reduce processes as described in

Algorithm based on the aforementioned premise.

The Map process simply copies the elements of A and B,

which are then sent to the Reduce process to be calculated.

Each of A's elements, Ai, j, must be multiplied by Bj,c (c=1,

2,..., n). Ci, c will result from the addition of Ai, j*Bj, c. As a

result, the term I c) is utilised to identify. It will yield m*t*n

elements in the end. Every element of B, Bi, j, must be

multiplied by Ar,i (r=1, 2,..., m). Ar, i*Bi, j will add up to Cr,j

(r, j), which is utilised as an identification keyword. It will

eventually yield t*n*m components. The key, value>, which is

the same as keyword, is used during the shuffling phase.

The Map and Reduce functions on Hadoop can be regarded

the smallest parallel execution units. We'll look at the time

complexity of the algorithm if the aforesaid application is

running in a distributed cluster of p computers. Because each

Map function has an O(n) time complexity, when p =

max(mt/p,1), the mt Map functions can be distributed to a

maximum of mt machines.

It must run mn Reduce routines throughout the Reduce phase.

Each Reduce function has an O time complexity (t). As a

result, the Reduce phase's overall time complexity is

O(max(mn/p, 1)t. During the MapReduce process, the time

cost of network transmission and the cost of file reading and

writing are not taken into account in the above study. There

may be significant variances during the experiment process

due to the various circumstances.

Because of AC-CNN imposes sparse constraints on the

network, most matrices formed of parameters are sparse as

well. We can make the matrix multiplication above even

better. At initially, we just store nonzero elements while

saving the matrix.

Since, the Map phase only duplicates the elements, the file

already contains a sparse matrix. There is no need to update

the Map function. If the corresponding position elements of A

and B are both nonzero, it just has to perform multiplication

during the Reduce phase, and it only needs to write the results

if the corresponding position element of C is nonzero. The

aforementioned strategy can improve the algorithm's

efficiency even further when the matrix is sparse.

International Journal For Technological Research In Engineering

Volume 10, Issue 1, September-2022 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2022.All rights reserved. 15

4. EVENT DETECTION
The standard data set namely KTH is often used to test the

performance of algorithms for event recognition. It is

compiled by nine people and contains ten different sorts of

events.

Table 3: Comparison of obtained results with other methods

It should be mentioned that they cannot be directly compared

due to the fact that they employ two separate methodologies.

In our method and literature, each continuous media clip is

treated as a separate unit and given an event label [11]. The

feature is calculated using a temporal window in the

literatures, but a label is only allocated to the centre frame of

the window. Each continuous media clip, which consists of

ten frames. JHUANG [30] retrieves the features from each of

the nine frames in the sequence. Although the proposed

method recognition rate isn't the best in the best-case scenario.

5. PERFORMANCE OF MAPREDUCE ALGORITHM

FOR EVENT DETECTION

Both KTH and related data sets were used in the trials to

validate the validity of AC-CNN-MR after employing Hadoop

MapReduce. The results of the parallel experiment were

compared to the results of the serial experiment. The

experiment was performed 81 times. Finally, we calculated an

average of all the results. Figure 16 shows that the ability of

ER-MR is nearly identical to the ability of AC-CNN.

Figure 16: Accuracy of AC-CNN and SASTCNN on the KTH

dataset.

This demonstrates the method's portability and verifies the

feasibility and correctness of AC-CNN-MR parallelization in

this dissertation. We use the same settings for the KTH data

set as we did before. The 5 fold cross-validation approach is

used for all experiment assessments in the KTH data set,

which means that all samples are randomly divided into 5

groups of equal size. One data set is chosen at random as the

testing set, while the others are used as training sets. This

technique was repeated five times, with the average of the five

experiments provided. The comparison trials on the KTH data

set, as shown in Figure 17, also corroborate the validity of the

AC-CNN-MR algorithm.

Figure 17: The accuracy of AC-CNN-MR and SASTCNN on

the KTH dataset.

We examined the training and testing times of AC-CNN and

AC-CNN-MR, respectively, to analyse the speed-up ratio after

AC-CNN-MR parallelization. The AC-CNN training and

testing times correspond to the time it takes to run AC-CNN-

MR on a single machine with Hadoop. We retrieved a

continuous media segment of 81 samples from the KTH data

set. We also replicated each of them 100 times, yielding a total

of 8100 samples. The data samples were trained ten times and

the training time results were averaged. We tested 900

samples at random and repeated the process ten times.

We created 65000 samples in total using the same

experimental procedure on the KTH data set. A total of 10,500

samples were picked at random for the testing set. The

training and testing processes are separated because they have

substantial differences. For example, the training process can

only accelerate the matrix operation, whereas the testing

process can fully accelerate each testing sample. The results

are shown in Table 4, which show that the speed-up ratio is

not very high.

Table 4: A comparison of the computational costs.

The theoretical speed-up ratio for a Hadoop cluster with three

machines is three, although the actual speed-up ratios are

significantly less than three. The cause for this is most likely

due to network transmission delays and reading and writing

data taking up the majority of the time. The speed-up ratio of

the training process is too low, which is due to the fact that the

training process primarily relies on the matrix operation to

accelerate, and because the matrix size is not very large, the

network transmission delay overwhelms the matrix parallel

algorithm's acceleration effect. The testing process has a

higher speed-up ratio than the training process since it

International Journal For Technological Research In Engineering

Volume 10, Issue 1, September-2022 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2022.All rights reserved. 16

involves the Map process whereas the training process does

not.

6. CONCLUSION
In this research study, we have introduced AC-CNN-MR,

which parallelizes matrix multiplication using Hadoop

MapReduce. The AC-CNN-MR algorithm was first

implemented on a Hadoop cluster. On both systems, the

performance of AC-CNN-MR was examined, and the

experimental findings were analysed in terms of accuracy and

computation efficiency.

REFERENCES

[1] Wang, L., Suter, D.: Recognizing human activities

from silhouettes: Motion subspace and factorial

discriminative graphical model. In: Proceedings of

IEEE Conference on Computer Vision and Pattern

Detection, pp. 1-8 (2007)

[2] Turaga, P., Chellappa, R., Subrahmanian, V., Udrea,

O.: Machine recognition of human activities: A

survey. IEEE Trans. Circ. Syst. Vid. 18(11), 1473-

1488 (2008)

[3] Weinland, D., Ronfard, R., Boyer, E.: Free viewpoint

Detection using motion history volumes. Comput.

Vis. Image Und. 104(2-3), 249-257 (2006)

[4] Weinland, D., Boyer, E., Ronfard, R.: Detection from

arbitrary views using 3D exemplars. In: Proceedings

of IEEE International Conference on Computer

Vision, (2007)

[5] Atmosukarto, I., Ahuja, N., Ghanem, B.: Action

recognition using discriminative structured trajectory

groups. In: Proceedings of IEEE Winter Conference

on Applications of Computer Vision, pp. 899-906

(2015)

[6] Yan, Y., Ricci, E., Subramanian, R., Liu, G., Sebe,

N.: Multitask linear discriminant analysis for view

invariant action recognition. IEEE Trans. Image

Process. 23(12), 5599- 5611 (2014)

[7] Bulbul, M., Jiang, Y., Ma, J.: DMMs-Based multiple

features fusion for human action recognition. INT. J.

Multimedia DATA EN. Manage. 6(4), 23-39 (2015)

[8] Lawrence, S., Giles, C., Tsoi, A., Back, A.: Face

recognition: a convolutional neural-network

approach. IEEE Trans. Neural Networ. 8(1), 98-113

(1997)

[9] Moez, B., Franck, M., Christian, W., Christophe, G.,

Atilla, B.: Spatio-temporal convolutional sparse auto-

encoder for sequence classification. In: Proceedings

of the 23rd British Machine Vision Conference 2012.

(2012)

[10] Ranzato, M., Huang, F. J., Boureau, Y., Lecun, L.:

Unsupervised learning of invariant feature

hierarchies with applications to object recognition.

In: Proceedings of IEEE Conference on Computer

Vision and Pattern Detection, pp. 1-8 (2007)

[11] Ranzato, M., LeCun, Y.: A sparse and locally shift

invariant feature extractor applied to document

images. In: Proceedings of International Conference

on Document Analysis and Detection, pp. 1213-1217

(2007)

[12] Hsieh, L., Wu, G., Hsu, Y., Hsu, W.: Online image

search result grouping with MapReduce-based image

clustering and graph construction for large-scale

photos. J. Vis. Commun. Image R. 25(2), 384-395

(2014)

[13] Han, J., Liu, Y., Sun, X.: A scalable random forest

algorithm based on MapReduce. In: Proceedings of

2013 4th IEEE International Conference on Software

Engineering and Service Science (ICSESS), pp. 849-

852 (2013)

[14] Chen, T., Zhang, X., Jin, S., Kim, O.: Efficient

classification using parallel and scalable compressed

model and Its application on intrusion detection.

Expert Syst. Appl. 41(13), 5972-5983 (2014)

[15] Tewari , N. C., Koduvely, H. M., Guha, S., Yadav,

A.: MapReduce implementation of variational

Bayesian probabilistic matrix factorization algorithm.

In: Proceedings of IEEE International Conference on

Big Data, pp. 145-152 (2013)

[16] Nobakht, B., Boer, F.: Multi-core programming.

Technology Foundation. 104(4), 430-445 (2006)

[17] Ranger, C., Raghuraman, R., Penmetsa, A., Bradski,

G., Kozyrakis, C.: Evaluating MapReduce for multi-

core and multiprocessor systems. In: Proceedings of

IEEE International Symposium on High Performance

Computer Architecture, 13-24 (2007)

[18] Mao, Y., Morris, R., Kaashoek, M. F.: Optimizing

MapReduce for multicore architecture. MIT-CSAIL-

TR-2010-020, (2010)

[19] Jiang, W., Ravi, V. T., Agrawal, G.: A Map-Reduce

system with an alternate API for multi-core

environments. In: Proceedings of the 2010 10th

IEEE/ACM International Conference on Cluster,

Cloud and Grid Computing, pp. 84-93 (2010)

[20] Chu, C., Kim, S., Lin, Y., Yu, Y., Bradski, R.:

MapReduce for machine learning on multicore. Adv.

Neural Inform. Process Syst. 19. 281-288 (2006)

[21] Kovoor, G., Singer, J., Luján, M.: Building a Java

MapReduce framework for multi-core architectures.

In: Proceedings of Multiprog, pp. 87-98 (2010)

[22] Chen, R., Chen, H., Zang, B.: Tiled-MapReduce:

optimizing resource usages of data-parallel

applications on multicore with tiling. In: Proceedings

of the 19th International Conference on Parallel

Architectures and Compilation Techniques. ACM,

pp. 523-534 (2010)

[23] Collobert, R., Kavukcuoglu, K., Farabet, C.: Torch7:

A matlab-like environment for machine learning. In

BigLearn, NIPS Workshop (2011)

[24] Jia, Y., Shelhamer, E., Donahue, J., Karayev, S.,

Long, J., Girshick, R., Guadarrama, S., Darrell, T.:

Caffe: Convolutional architecture for fast feature

embedding. In: Proceedings of the ACM

International Conference on Multimedia. ACM, pp.

675–678 (2014)

[25] Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J.,

Goodfellow, I., Bergeron, A., Bouchard, N., Warde-

Farley, D., Bengio, Y.: Theano: new features and

speed improvements. In arXiv preprint

arXiv:1211.5590.

[26] Yang, J., Zhang, D., Frangi, A.F., Yang, J.: Two-

International Journal For Technological Research In Engineering

Volume 10, Issue 1, September-2022 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2022.All rights reserved. 17

Dimensional PCA: a new approach to appearance-

based face representation and recognition. IEEE

Trans. Pattern Anal. Machine Intell. 26(1), 131-137

(2004)

[27] Sheng, Z., Shan, Z.: Face recognition by LLE

dimensionality reduction. In: Proceedings of

International Conference on Intelligent Computation

Technology & Automation.1, pp. 121-123 (2011)

[28] Lanaaya, H., Martin, A., Aboutajdine, D., Khenchaf,

A.: A new dimensionality reduction method for

seabed characterization: Supervised6 Curvilinear

Component Analysis. Oceans-europe.1, 339-344

(2005)

[29] Blank, M., Gorelick, L., Shechtman, E., Irani, M.,

Basri, R.: Actions as space-time shapes. In:

Proceedings of Tenth IEEE International Conference

on Computer Vision, pp. 1395-1402 (2005).

[30] Jhuang, H., Serre, T., Wolf, L., Poggio, T.: A

biologically inspired system for action recognition.

In: Proceedings of IEEE 11th International

Conference on Computer Vision. IEEE, pp. 1-8

(2007)

[31] Niebles, J. C., Fei-Fei, L.: A hierarchical model of

shape and appearance for human action

classification. In: Proceedings of IEEE Conference

on Computer Vision and Pattern Detection. IEEE, pp.

1-8 (2007)

[32] Bergstra, J., Yamins, D., & Cox, D. D. (2013, June).

Hyperopt: A python library for optimizing the

hyperparameters of machine learning algorithms. In

Proceedings of the 12th Python in science conference

(Vol. 13, pp. 20). Citeseer.

[33] Bergstra, J., Bardenet, R., Bengio, Y., & Kégl, B.

(2011, December). Algorithms for hyper-parameter

optimization. In 25th annual conference on neural

information processing systems (NIPS 2011) (Vol.

24). Neural Information Processing Systems

Foundation.

[34] Caruana, R., & Niculescu-Mizil, A. (2006, June). An

empirical comparison of supervised learning

algorithms. In Proceedings of the 23rd international

conference on Machine learning (pp. 161-168).

[35] Breiman, L. (2001) ‘Random Forests’. Machine

Learning 45, 5–32.

[36] Sirikulviriya, N., & Sinthupinyo, S. (2011, May).

Integration of rules from a random forest. In

International Conference on Information and

Electronics Engineering (Vol. 6, pp. 194-198).

[37] Lim, C., Lee, S. R., & Chang, J. H. (2012). Efficient

implementation of an SVM-based speech/music

classifier by enhancing temporal locality in support

vector references. IEEE Transactions on Consumer

Electronics, 58(3), 898-904.

[38] Yang, L., & Shami, A. (2020). On hyperparameter

optimization of machine learning algorithms: Theory

and practice. Neurocomputing, 415, 295-316.

[39] Tay, B., Hyun, J. K., & Oh, S. (2014). A machine

learning approach for specification of spinal cord

injuries using fractional anisotropy values obtained

from diffusion tensor images. Computational and

mathematical methods in medicine, 2014.

[40] Hosmer Jr, et al. (2013). Applied logistic regression

(Vol. 398). John Wiley & Sons.

[41] Angel, L., Viola, J., Vega, M., & Restrepo, R. (2016,

August). Sterilization process stages estimation for

an autoclave using logistic regression models. In

2016 XXI Symposium on Signal Processing, Images

and Artificial Vision (STSIVA) (pp. 1-5). IEEE.

[42] Kibriya, A. M., et al. (2004, December). Multinomial

naive bayes for text categorization revisited. In

Australasian Joint Conference on Artificial

Intelligence (pp. 488-499). Springer, Berlin,

Heidelberg.

[43] Lowd, D., & Domingos, P. (2005, August). Naive

Bayes models for probability estimation. In

Proceedings of the 22nd international conference on

Machine learning (pp. 529-536).

[44] Hoerl, A. E., & Kennard, R. W. (1970). Ridge

regression: Biased estimation for nonorthogonal

problems. Technometrics, 12(1), 55-67.

[45] Cui, Z., & Gong, G. (2018). The effect of machine

learning regression algorithms and sample size on

individualized behavioral prediction with functional

connectivity features. Neuroimage, 178, 622-637.

[46] Zou, H., & Hastie, T. (2005). Regularization and

variable selection via the elastic net. Journal of the

royal statistical society: series B (statistical

methodology), 67(2), 301-320.

[47] Tibshirani, R. (1996). Regression shrinkage and

selection via the lasso. Journal of the Royal

Statistical Society: Series B (Methodological), 58(1),

267-288.

[48] Park, T., & Casella, G. (2008). The bayesian lasso.

Journal of the American Statistical Association,

103(482), 681-686.

[49] Feurer, M., & Hutter, F. (2019). Hyperparameter

optimization. In Automated Machine Learning (pp.

3-33). Springer, Cham.

[50] Bergstra, J., Bardenet, R., Bengio, Y., & Kégl, B.

(2011, December). Algorithms for hyper-parameter

optimization. In 25th annual conference on neural

information processing systems (NIPS 2011) (Vol.

24). Neural Information Processing Systems

Foundation.

[51] Tanay Agrawal (2020). Hyperparameter

Optimization in Machine Learning: Make Your

Machine Learning and Deep Learning Models More

Efficient.

