BONE TUMOR DETECTION FROM MRI IMAGE USING IMAGE PROCESSING AND MACHINE LEARNING

¹Padmavathi B, ²Sital Kumar Jagri, ³Arun Kumar Rana, ⁴Dipak Prasad Sah, ⁵Umesh Bist

¹Professor, ^{2,3,4,5}Students

Department of CSE East West Institute of Technology Bengaluru, India

Abstract—Cancer, an ominous ailment stemming from uncontrolled cell proliferation, encompasses nearly 100 distinct types, with bone cancer emerging as a pervasive and lethal variant. Its elusive nature makes timely detection imperative, a challenge currently addressed through data mining and image processing in medical analysis. Traditionally deemed rare, malignant and benign bone tumors, especially in the foot, defy this perception. Globally, bone cancer stands as a perilous threat, often attributing to premature mortality. Recognizing this urgency, our project employs MATLAB 9 to develop a precise bone cancer detection system through MRI images. Beyond detection, our innovative system classifies images as cancerous or non-cancerous, contributing to the advancement of medical diagnostics and treatment.

I. INTRODUCTION

The skeletal framework of the human body is intricately designed to provide support, protection, and facilitate bodily movements. Comprising a hollow structure, bones exhibit a robust exterior formed by a resilient tissue matrix interwoven with deposits of calcium salts.

At the extremities of each bone, a pliable cartilage, distinct from bone tissue, acts as a buffer. This cartilage, softer than bone and composed of fibrous tissue matrix interspersed with a gel-like substance low in calcium content, plays a crucial role in the bone development process. Initially, many bones originate as cartilage, with the body subsequently depositing calcium onto the cartilage scaffold to form fully-fledged bone structures. In certain instances, remnants of cartilage persist at bone ends, serving as supportive interfaces between adjacent bones. These cartilaginous remnants, in conjunction with ligaments and other connecting tissues, culminate in the formation of joints.

Boasting an impressive strength capable of

withstanding up to 12,000 pounds per square inch, bones are formidable structures. Breaking the thigh bone, for example, requires a substantial force of 1,200 to 1,800 pounds. The cellular composition of bones involves two key types: osteoclasts, associated with bone resorption. However, abnormalities in cell growth, particularly in the form of cancerous osteoclasts, can give rise to primary bone cancer.

Primary bone cancer, or sarcomas, manifests in tissues such as muscle, bone, fibrous tissue, blood vessels, and fat tissue. These malignancies can emerge anywhere in the body, disrupting the intricate balance of bone remodeling activities. Unlike normal bone, relentlessly engaged in a cycle of breakdown and reconstruction, bones afflicted by cancer undergo distorted structural changes at an accelerated rate. The process of bone cancer can be categorized into primary and secondary, with primary bone cancer originating within the bone tissue itself.

In the context of medical imaging and diagnostics, this research project focuses on leveraging MRI images and machine learning algorithms for the early detection of tumors. Through a comprehensive understanding of the unique characteristics of bone tumor, the study aims to contribute to the advancement of diagnostic methodologies, providing valuable insights for timely and effective intervention.

II. LITERATURE SURVEY

The survey conducted for this study is summarized in a tabular format, providing a comprehensive overview of relevant research works. The table encompasses crucial details such as the name of the study, author(s), publication year, research objectives, and key advantages and disadvantages identified in each work.

Title	Authors	Year	Objectives	Advantages	Disadvantages
BoneCancerDetectionfromMRIScanImageryUsingMeanPixelIntensity	Madhuri Avula, Narasimha Prasad Lakkakula, Murali Prasad Raja	2014	 To detect bone cancer from MRI scan imagery using mean pixel intensity. To segment the bone cancer tumor from the images using the k-means clustering algorithm. To propose threshold values for classifying medical images. 	 -Achieves 95% accuracy with less computational time. - Applicable for original format of DICOM medical image with modifications. - Provides a formal mechanism for choosing mean pixel intensity values to discriminate between cancer and no- cancer for the images. 	 K-means clustering algorithm cannot build non-convex shaped clusters. The number of clusters needs to be predefined. K-means clustering is receptive to noise and can significantly manipulate the mean value with a small number of data.
A Survey Paper on Calcaneus Bone Tumor Detection Using different Improved Canny Edge Detector	Akash Pandey	2016	 Analyzing Computed Tomography images through Computer Aided Diagnosing (CAD) system for tumor detection in the foot and ankle. Studying different types of bone tumors, such as Unicameral or solitary bone cysts, Osteoid osteoma, Chondroblastoma's, Giant Cell Tumors, etc. Investigating edge detection algorithms, particularly the Canny edge detector, for identifying contours in natural images. 	 Utilizing Computer Aided Diagnosing (CAD) system for early detection and diagnosis of bone tumors. Employing edge detection algorithms to identify tumor boundaries for planning operations. Exploring improved Canny edge detectors to enhance the accuracy of edge detection in medical images. 	 Limitations of the Canny edge detector in recognizing weak edges around objects. Challenges in distinguishing original edges of objects from noise or trivial geometric figures. Heavy calculation requirements for certain improved Canny edge detectors.
Integrated Approach for Bone Tumor Detection from MRI Scan Imagery	Krupali D. Mistry, Bijal J. Talati	2016	 Detect Enchondroma bone tumor from MRI images Use image processing and segmentation clustering techniques for detection Achieve high accuracy in tumor detection 	 Utilizes MRI, which has higher resolutions for image acquisition Integrates K-means with Fuzzy C-means clustering for accurate segmentation Provides a non- invasive method for obtaining images of the human body 	 Difficulty in selecting appropriate segmentation technique for a particular kind of image Sensitivity measure can be improved

Bone Cancer Eftekhar Detection & Hossain, Classification Md. Farhad Using Hossain, Hossain, Fuzzy Clustering Mohammad & Neuro Anisur Rahaman Fuzzy Classifier		ad	classification of tumor c from bone MRI us wavelet transform and K classifier		using tumor detection KNN - Employs KNN classifier for bone tumor and classification umors - Achieves 92.50%		Only Utilizes wavelet transform and KNN classifier	
Title	Authors	Year		Objectives		Advantages		Disadvantages
SVM-Based Bone Tumor Detection Using The Texture Features Of X- ray Image	Chuli Xia, Kai Niu, Zhiqiang He, Shun Tang, Jichuan Wang, Yidan Zhang, Zhiqing Zhao, Wei Guo	2018	det - 7 of l 6 ear - 7 ma dif	To propose a bone tumor ector based on 690. Fo analyze x-ray images bone tumors and extract different features for ly diagnosis. To apply support vector chine (SVM) with ferent kernel functions classification.	accur detec - U valida in the - E	Achieves a stable acy of 99% in the tion of bone tumors. Itilizes 5-fold cross ation for robustness experiment. Extracts 6 different res from x-ray images comprehensive sis.	featu are o macl	Utilizes SVM and tre extraction, which common techniques in hine learning for sification tasks.
Screening and Identify the Bone Cancer/Tumor using Image Processing	K. Sujatha, S. Jayalakshmi, Sinthia. P, Malathi M, Ramkumar. K.S, Su-Qun Cao, and Harikrishnan. K	2018	and pro - and ima - boi stag	To identify bone cancer d tumors using image ocessing techniques. To develop automated d reliable techniques for age processing analysis. To predict and detect ne tumors at an early ge using image ocessing and genetic orithm.	diagn and tu - Pr predic an eau - proce	ps in the analysis and osis of bone cancer umors. ovides a method for cting bone tumors at rly stage. Utilizes image ssing and genetic ithm for effective tion.	and whic cons - pred detec - techn incon	Requires pre-processing denoising of images, th can be time- uming. May have false ictions in the edge ction process. Relies on older mologies and may not rporate the latest ncements.

		1	1		
Detection &	Eftekhar	2018	- Detection and	- Achieved 93.75%	5
Classi fication	Hossain and		classification of bone	accuracy in bone cancer	clustering, which is used
of Tumor Cells	Mohammad		cancer using fuzzy C-	classification.	unsupervised segmentation
from	Anisur		mean clustering and	- Utilizes fuzzy C-mean	method
Bone MR	Rahaman		adaptive neuro fuzzy	clustering for tumor	
ImageryUsing			inference system (ANFIS).	detection and ANFIS for	
Connected			- Utilization of gray level	classification, providing a	
Component			co-occurrence matrix	comprehensive approach.	
Analysis &			(GLCM) features	- Provides a method for	
Neural			extracted from MRI	early detection and	
Network			images for training and	classification of bone	
			testing the ANFIS	cancer, which is crucial for	
			network.	patient treatment.	
			- Evaluation of	1	
			classification results based		
			on accuracy, sensitivity,		
			and specificity.		
Bone Cancer	Ranjitha M	2019	- To detect bone cancer	- Promising results with	- The difficulty in defining
Detection	M,		using image processing	up to 98.14% accuracy.	the number of clusters in K-
Using K-means	Arpitha C N,		techniques.	- Utilizes image	means clustering.
Segmentation	Taranath N L,		- To achieve accurate	processing techniques for	- Relies on image
And KNN	C.K.		detection of bone cancer in	accurate diagnosis.	preprocessing, which can be
Classification	Subbaraya		its early stages.	- Provides a systematic	computationally intensive.
	j		- To utilize K-means	approach for bone cancer	- Requires careful
			segmentation and KNN	detection using ultrasound	selection of features for
			classification for bone	images.	accurate classification
			cancer detection.		careful selection of features
					for accurate classification.

Title	Authors	Year	Objectives	Advantages	Disadvantages
Bone Metastatic Tumor Detection Based on AnoGAN Using CT Images	Haruna Watanabe Ren Togo Takahiro Ogawa Miki Haseyama	2019	 To detect bone metastatic tumors using computed tomography (CT) images. To propose a method for unsupervised detection of bone metastatic tumors using a generative adversarial network model. To reduce the burden on clinicians by using unsupervised learning approaches for tumor detection. 	 Effective detection of bone metastatic tumours in CT images. Reduction of labour for clinicians through unsupervised learning approaches. Utilization of generative adversarial network model for anomaly detection. 	Challenging task in medical image analysis only provide anomaly detection.
SVM Model based Computerized Bone Cancer Detection	BHUKYA JABBER M .SHANKAR P.VENKATE SWARA RAO AZM IRA KRISHNA CMAK ZEELAN BASHA	2020	 To propose an automatic bone cancer detection system to aid in early detection of bone cancers. To achieve an accuracy of about 92% in bone cancer detection using Support Vector Machine (SVM) based M3 filtering and Fuzzy C-Means (FCM) segmentation method. To provide a system that can assist oncologists in timely treatment of bone cancers. 	 Achieving a high accuracy of 92% in bone cancer detection. Utilizing advanced techniques such as SVM, M3 filtering, and FCM segmentation for improved detection. Providing a system that can aid in early detection and timely treatment of bone cancers, potentially saving lives. 	It only relies on Support Vector Machine (SVM), M3 filtering, and Fuzzy C- Means (FCM) segmentation But deep learning architectures offer better performance.
Detecting Giant Cell Tumor of Bone Lesions using Mueller Matrix Polarization Microscopic Imaging and Multi- parameters Fusion Network	Yongqiang Zhao, Mohamed Reda, Kai Feng, Peng Zhang, Gaojian Cheng, Zhigang Ren Seong G. Kong, Shihan Su, HaiXia Huang, Jiyuan Zang	2020	 To propose a GCTB detection method using Mueller matrix polarization microscopic (MMPM) imaging and multi-parameters fusion network. To establish a MMPM image dataset of GCTB tissue and verify the effectiveness of MMPM imaging in GCTB detection. To propose a multiparameters fusion network (MPFN) model to jointly utilize the expertise from histopathology and optical scattering information. 	The proposed method outperformed state-of-the- art for GCTB lesions detection. - Utilizes deep learning to learn deep features from the source Mueller matrix elements for detecting biological tissue lesion of GCTB. - Combines deep Micro- Pol features and hand- crafted features to improve detection accuracy of lesion tissue.	 The physical significance of Mueller matrix elements and the relationships between the elements and the tissue micro-structure are uncertain. The accuracy of quantitative analysis in Mueller matrix polar decomposition (MMPD) still needs to be studied.

Classification using Fuzzy C Means Clustering Algorithm	Mr.D. Mansoor Hussain, Dharshini A, Anuroopa M, Durganandini G	b ir R C tu tu (t (t) s	nages. - To employ Fast and cobust Fuzzy C Means Clustering (FRFCM) for imor detection. - To identify whether the imor is non-cancerous benign) or cancerous malignant) based on egmentation technique.	C Means Clustering in FRFCM) is more L efficient and stable than in other clustering m algorithms. so - The proposed method has high noise immunity and less computational complexity. - The processing time is observed to be 0.5 seconds or even less.	he scope is limited to this naging modality. ack of Integrating aformation from multiple nodalities (such as CT cans or PET scans)
Title	Authors	Year	Objectives	Advantages	Disadvantages
Bone Cancer Detection techniques using Machine Learning	Santhanalaks	2022	 To discuss different types of bone cancer and their characteristics. To explore different image acquisition techniques for bone cancer detection. To compare the performance of different CNN (Convolution Neural Networks) types for bone cancer detection. To work specifically on particular types of cancer using different segmentation and classification techniques for efficient detection. To consider external validation, generalizability, and dataset size while designing new processes or systems for cancer detection. 	 of bone cancer and their characteristics. Explores different image acquisition techniques for bone cancer detection. Compares the performance of different CNN types for bone cancer detection. Emphasizes the need for a common platform for bone cancer detection using different image types. Highlights the importance of standardization for establishing large datasets. 	

·				r	'
Bone Cancer	EATEDAL	2023	- Develop an Owl Search	1	-
Detection and	ALABDULK		Algorithm with a Deep	model for feature	is solely dependent on X-
Classification	REEM		Learning-Driven Bone	extraction, eliminating the	ray images, it may miss out
Using			Cancer Detection and	need for manual	on the advantages
Owl Search			Classification (OSADL-	segmentation of X-ray	provided by the
Algorithm With			BCDC) technique.	images.	combination of multiple
Deep Learning on			- Utilize transfer learning	- Incorporates the Owl	imaging modalities (such
X-Ray Images			with a hyperparameter	Search Algorithm for	as MRI, CT, or PET scans)
			tuning strategy for bone	hyperparameter	for comprehensive cancer
			cancer detection.	optimization, enhancing	diagnosis.
			- Implement an	I I I I I I I I I I I I I I I I I I I	
			automated system to	- Employs the long short-	
			classify and identify	term memory (LSTM)	
			cancerous bone and	approach for the	
			healthy bone from X-ray	identification of bone	
			images.	tumors.	
			- Reduce diagnosis time	- Achieves a high	
			and achieve faster	accuracy of 95% in bone	
			convergence in bone	cancer classification.	
			cancer detection.		

III. CONCLUSION

The intricate balance of bone structure and function is disrupted by the onset of bone cancer, impacting the dynamic processes of growth and remodeling. The formidable strength of bones becomes a battleground where abnormal cell growth transforms the resilient skeletal framework. Primary bone cancer, characterized by sarcomas, demands innovative diagnostic approaches, as explored in this research project. Leveraging the synergy of MRI imaging and machine learning, the study strives to enhance early detection capabilities, fostering timely intervention. By unraveling the complexities of bone tumors, this research contributes to the evolving landscape of medical diagnostics, offering promising avenues for improved patient outcomes. The project's potential impact extends to public health, providing a robust tool for early and accurate diagnoses, ultimately improving patient outcomes. Additionally, the project serves as an educational and training resource for medical professionals, facilitating continuous learning and adaptation to emerging technologies.

REFERENCES

[1] D. Pan, R. Liu, B. Zheng, J. Yuan, H. Zeng, Z. He, Z. Luo, G. Qin, and W. Chen, "Using machine learning to unravel the value of radiographic features for the classification of bone tumors," BioMed Res. Int., vol. 2021, pp. 1–10, Mar. 2021.

[2] M. W. Nadeem, H. G. Goh, A. Ali, M. Hussain, M. A. Khan, and V. A. P. Ponnusamy, "Bone age assessment empowered with deep learning: A survey, open research challenges and future directions," Diagnostics, vol. 10, no. 10, p. 781, 2020.

[3] F. R. Eweje, B. Bao, J. Wu, D. Dalal, W.-H. Liao, Y. He, Y. Luo, S. Lu, P. Zhang, X. Peng, R. Sebro, H. X. Bai, and L. States, "Deep learning for classification of bone

lesions on routine MRI," EBioMedicine, vol. 68, Jun. 2021, Art. no. 103402.

[4] H. B. Arunachalam, R. Mishra, O. Daescu, K. Cederberg, D. Rakheja, A. Sengupta, D. Leonard, R. Hallac, and P. Leavey, "Viable and necrotic tumor assessment from whole slide images of osteosarcoma using machine-learning and deep-learning models," PLoS one, vol. 14, no. 4, Apr. 2019, Art. no. e0210706.

[5] Y. He, I. Pan, B. Bao, K. Halsey, M. Chang, H. Liu, S. Peng, R. A. Sebro, J. Guan, T. Yi, A. T. Delworth, F. Eweje, L. J. States, P. J. Zhang, Z. Zhang, J. Wu, X. Peng, and H. X. Bai, "Deep learning-based classification of primary bone tumors on radiographs: A preliminary study," eBioMedicine, vol. 62, Dec. 2020, Art. no. 103121.

[6] C. E. von Schacky, N. J. Wilhelm, V. S. Schäfer, Y. Leonhardt, F. G. Gassert, S. C. Foreman, F. T. Gassert, M. Jung, P. M. Jungmann, M. F. Russe, C. Mogler, C. Knebel, R. von Eisenhart-Rothe, M. R. Makowski, K. Woertler, R. Burgkart, and A. S. Gersing, "Multitask deep learning for segmentation and classification of primary bone tumors on radiographs," Radiology, vol. 301, no. 2, pp. 398–406, Nov. 2021.

[7] N. Papandrianos, E. Papageorgiou, A. Anagnostis, and K. Papageorgiou, "Bone metastasis classification using whole body images from prostate cancer patients based on convolutional neural networks application," PLoS ONE, vol. 15, no. 8, Aug. 2020, Art. no. e0237213.

[8] A. Ratley, J. Minj, and P. Patre, "Leukemia disease detection and classification using machine learning approaches: A review," in Proc. 1st Int. Conf. Power, Control Comput. Technol. (ICPC2T), Jan. 2020, pp. 161–165.