A DESCRIPTIVE ANALYSIS OF RAILWAY RISK ASSESSMENT AND FAULT DETECTION USING IOT BASED SYSTEM

¹Shashikala A B , ²Harshitha M B, ³Sheetal, ⁴Sindhu T, ⁵Sonu M K 1Professor, ^{2,3,4,5}Students Department of CSE East West Institute of Technology Bengaluru, India

Abstract—Railway Track Tracer System for creature detection is a system for detecting cracks on the railway tracks. This system will help to avoid many accidents that occur on railways. This system frequently monitors the railway tracks using a camera, so that the presence of cracks ans any derailments can be easily identified and then necessary actions can be taken to prevent accidents.

Internet of Things is the most studied field with endless real life applications. Internet of Things (IOT) is implemented to give an up-to-date update on railways and their management. In this mode IR sensor is used for checking the availability of the platform. This system is used update the platform availability to the upcoming train to avoid the prevent accidents. To detect fire and automatic engine detachment. To update the platform availability.

Keywords - Railway Disasters, IOT, Deep Learning, Platform Availability Detection, Alert, Fire Detection, Railway Tracks.

I. INTRODUCTION

The sizeable role of railways in transporting people and goods is underscored by their importance to India's transportation network and economy. Yet, challenges like maintenance and safety persist as significant areas needing continuous attention and improvement. Effective maintenance and a focus on safety not only ensure efficient transportation but also guarantee the well-being of passengers and goods in transit. The integration of technology has been instrumental in advancing railway systems globally, introducing innovations in track monitoring, signaling, data analysis, and safety measures. These advancements play a crucial role in predicting and preventing issues before they escalate, thereby enhancing the overall reliability and safety of the system. Utilizing cameras, the system swiftly identifies living creatures, effectively averting potential accidents. This comprehensive system encompasses train details, the locomotive operator's information (loco-pilot), an alert system, and camera setups.In this suggested framework, the process involves the capture of images through cameras, followed by their analysis using various image processing techniques.. Upon detecting an object in an image, a subsequent picture is rapidly taken within a fraction of a second, initiatinga secondary analysis process. Comparison between these images is conducted, and if any obstacle is detected in both instances, an immediate alert is triggered via the application. This instant notification reaches both the loco-pilot and the nearby control room, ensuring timely action

A. IoT in Track Monitoring and Disaster Prediction :

sensors deployed alongside railway tracks IoT continuously monitor several metrics, including track vibrations, temperature, and alignment. Any deviations from standard readings act as warning signs for possible track deformations, misalignments, structural or weaknesses. Moreover, sensors integrated into trains and railway infrastructure, leveraging IoT technology, gather real-time data on vital components like wheels, brakes, and engines. By employing predictive analytics on this data, potential failures can be anticipated beforehand, effectively averting accidents. Moreover, these sensors possess the ability to identify unfavorable environmental circumstances like intense rainfall and occurrences of landslides., or extreme temperatures that could endanger railway tracks or operations. Upon detecting these conditions, the sensors automatically activate alerts and initiate proactive measures, thus preempting potential disasters.

B. IoT in Collision Avoidance and Emergency Alert:

IoT devices like cameras, LiDAR, and radar installed within the trains and tracks have the capability to detect obstacles, other trains, or objects . IOT based railway systems can promptly alert train operators in real-time to take necessary measures and prevent collisions. However, there is room for integrating various IoT-based communication devices and alert systems into trains and railway stations to enhance safety during emergencies like accidents or derailments. The implementation of these systems holds significant potential to enhance response protocols and safety measures across railway networks.

C. IoT in Checking for Platform Availability and FireDetection:

The method used to ascertain platform availability relies on the principle where the infrared (IR) sensor doesn't detect reflected light when an object is present, causing the train to stop. Each platform is equipped with two IR sensors, and anLCD screens exhibit messages that communicate the platform's current status, such as "PLATFORM 1 AVAILABLE," "PLATFORM 2 AVAILABLE," "ALL PLATFORMS AVAILABLE," or "PLATFORM NOT AVAILABLE." In each train compartment, a fire sensor is installed. When it detects flames, it sends an alert to the controller, activating a relay that triggers the sprinkler system. Another motor is employed to separate the compartment, preventing the fire from spreading. The LCD screen shows messages like "FIRE" and "HELP," while a buzzer notifies passengers about the fire.

D. IoT in Training and Simulation for Creature and Wildlife Protection:

IoT technology is instrumental in training and simulation efforts aimed at safeguarding creatures and wildlife. One key application involves employing IoTenabled satellite telemetry systems to track the movements of large animals, especially migratory species or those residing in expansive and secluded habitats. This technology consistently offers live updates regarding the whereabouts and behaviors of these animals. IoT collars, equipped with a diverse array of sensors, are employed to track vital health parameters in animals.

Moreover, IoT collars equipped with a variety of sensors are utilized to monitor essential health parameters in animals, such as heart rate, body temperature, and activity levels. These collars are designed to alert researchers or conservationists if any irregularities in an animal's vital signs are detected, indicating potential health issues.

II LITERATURE SURVEY

The compiled literature survey for this study is structured and presented in a tabular format., presenting a comprehensive overview of pertinent research. Within the table, crucial information like study titles, author(s), publication years, research objectives, and the primary advantages and disadvantages outlined in each work are systematically included..

				· · · · · · · · · · · · · · · · · · ·	
	Authors	Year		Advantages	Disadvantages
TitleUtilizing DeepLearning forRailway SafetyRiskAssessment.[1]Assessing Risksin Rail FreightTransportOperations[2]	Hamad Alawad; Sak dirat Kaewunruen; Min An Lucyna Szaciłoa , Marianna	Year 2020 2021	Objectives A fresh approach that combines computer vision and pattern recognition for risk management in railway systems involves employing a Convolutional Neural Network (CNN) as a supervised machine learning model to recognize potential hazards. critical analysis of the literature on selected areas of risk assessment in transport system and	1. Stereo cameras were employed to collect motion data and generate a 3D skeleton model for identifying common unsafe behaviors. The efficiency, cost- effectiveness, and rapid acquisition of visual data have been emphasized through computer vision technology, showcasing its potential for vision- based methodologies.1. 1.Emphasizes showcasing the dependability of rolling	 CCTV and analog cameras are crucial in accurately identifying station areas, such as platforms. Escalators, and tunnels. Nonetheless, the human element operating these systems remains central, potentially introducing human errors into the process. A general critical infrastructure may overlook specific railway
Operations[2] The Planning of	Jacynaa , Emilian Szczepański a , Mariusz Izdebski a Borna Abram	2021	in transport system and on tools and methods for risk assessment in other areas is carried out. The second section involves identifying the research area. The authors have outlined the process of performance 1. This document	 stock through the Wei bull reliability model 2., Addressing security concerns by examining methods in minimizing the adverse impacts on the system. 1. LED fixtures will be 	features, such as the power supply system. The system's effectiveness might be limited to specific regions where the sensors are installed.
Investment Activities in Field of Railway Transport with Support of Simulation Tools . [3]	ović a, Denis Šipuš a, Danij el Jurešić		management.	mounted on one rail side, while three groups of LDRs will be placed on the opposing side. In normal conditions, in the absence of any fractures 2. Establishes cost- effectiveness relative to existing approaches. Additionally, when applied extensively over an extended duration, it aims to enhance safety norms for railway tracks and establish a more efficient testing infrastructure to yield improved outcomes.	capability to inspect both the surface and the immediate subsurface of the rail track. 2. Due to its inability to be positioned on a touching robot panel, it was deemed unsuitable for practical implementation.
Improved Approach for Fire Detection using Deep Learning Models. [4]	Shafique, R.; Siddiqui, H UR.; Rustam, F.; Ullah, S.	2022	1. A presented automatic railway track inspection system has the ability to differentiate between three track conditions: wheel burn, superelevation, and normal track	1. The system is designed to activate an alarm upon detecting any defects. Additional functionalities can be incorporated, such as fault localization and integration with IoT for remote fault detection comprehension, facilitating the identification of hot spots and providing reasoning capabilities	1. The multilayer perceptron stands as a commonly utilized deep learning network employed across various tasks, encompassing image processing, object detection, and Natural Language Processing (NLP) assignments.

Title	Authors	Year	Objectives	Advantages	Disadvantages
Rail crack	Peng Xu, Ch	2020	1. the effects of	1. Addresses the	1. the ultrasonic
detection and	enLu Zhu, H	2020	detection speed on eddy	challenge of achieving	transducers must be in
evaluation at	ongMing Ze		current testing (ECT)	high detection rates	close link with the track
high speed	ng, Ping Wa		signals are studied, and	across multiple	to achieve
based on	ng		the proposed method for	databases.	ultrasonic transmission.
differential	0		quantitatively evaluating	2. Utilizes transfer	This requirement limits
ECT system			railway surface cracks at	learning and data	the speed of the
. [5]			varying speeds is	augmentation to enhance	inspection train.
			introduced.	the model performance.	2. Implementing the
			2. The relationship	3. Provides a clear model	models real-timescenario
			comprising defect signal	architecture involving	may pose
			amplitude, the defect depth, and the detection	data pre processing, augmentation,	logistical and regulatory challenges.
			speed is further obtained,	and classification.	enanenges.
			which evaluate defect	and classification.	
			depth at different speed.		
"Dall 1	Dang D 7	2020	1 Otman 1 1 1.1	1 stantformer 1	1. Significantly great
"Railway Track Defect	Dang, DZ.; Lai, CC.;	2020	1. Structural health monitoring (SHM) is	1. significant changes in waveform in time and	1. Significantly great cost.
Detection via	Ni, YQ.;		vital to the maintenance	frequency domains have	2. Potential false alerts
Classification	Zhao, Q.; Su,		of civil infrastructures.	been observed. It has	due to line-of- sight
Utilizing Fiber	B.; Zhou		2. In rail transit systems,	been concluded that	issues.
Bragg Grating			timely detection of defects	FBGs are consummate	
Ultrasonic			in rail tracks can		
Sensors". [6]			significantly mitigate the	utilized in UGW	
			risk of severe	inspection tasks,	
			accidents.Accidents like	especially in complex	
			derailment. Non- destructive testing (NDT)	environments with high- level EMI.	
			has been implemented in	2. Uses sensors for	
			railway online and	comprehensive data	
			offline monitoring	collection.	
			systems using state-of-		
			the-art sensing		
			technologies		
Learning	Hamad	2019	1. This paper explores the	1. research shows the vast	1. There are several
From	Alawad; Sak		1 2	potential of the innovative	variants of DTs such as
Accidents,	dirat			application of ML in	classification and
A Machine	Kaewunruen;			safety analysis for the	regression trees (CART),
Learning for	Min An			railway industry.	chi-squared automatic
Safety at			analysis of accidents at		interaction detection
Railway Stations			stations to predict the traits of passengers		(CHAID), and iterative dichotomies which did
[7]			affected by accidents.	improved levels of safety	not give accurate results
[/]			2. The critical		not give accurate results
			contribution of this		
			presentation of ML and		
			an explanation of how		
			this technique is applied		
			for ensuring safety,		

	· · · · · ·			· · · · · · · · · · · · · · · · · · ·	
Title	Authors	Year	Objectives	Advantages	Disadvantages
Securing the	Unger, S.;		1. Defining Attack	1. Identifying future	1. Financial damage to
Future	Heinrich, M.; Scheuermann		Graphs as a graphical	technologies that will be	.
Railway		2022	solution for the security	available until 2050 and	the operator, an
System:	, D.;	2023	Analysis mitigates the	It could be incorporated	individual, or a
Technology	Katzenbeisse		disadvantages of other	or integrated into the	customer;
Forecast,	r, S.;		risk and security analysis	existing railway system	2. Reputation damage to
Security	Schubert,		solutions, i.e., table-	2. Advantages	the operator,
Measures, and	M.;		based solutions. The first	include centralized	manufacturer, or an
Research	Hagemann,		advantage of Attack	maintenance, backup	individual.
Demands	L.; Iffländer,		Graphs is that a visual	resource availability,	
. [8]	L		representation of the	standard components,	
			security landscape	such as (commercial off-	
			enhances the	the-shelf (COTS)), and	
			understanding and	centralized personnel	
			communication of	deployment.	
			complex risk information		
			and simplifies the		
			identification of patterns,		
			trends, and relationships		
T	X7	2022	among threats and risks		
Improved	Yujie Wanay Vin	2022	1. Suggesting an enhanced anomaly	1. further enhance	1. LSTM models have
LSTM-Based	Wang; Xin		5		a percentage of error
Time-Series	Du; Zhihui		detection scheme for time-series data using	anomaly detection	readings in the final call.
Anomaly	Lu; Qiang		time-series data using Long Short-Term	performance, we also	2. This system was
Detection in	Duan; Jie Wu		Memory (LSTM)	propose a pruning	difficult to implement in the available models.
Rail Transit			models.	algorithm for reducing false anomalies	the available models.
Operation			2. The primary		
Environments			components of this	2. rely on scarce anomaly labels but	
[9]			proposed scheme	dynamically determines a	
			comprise an improved	threshold of prediction	
			LSTM model, tailored to	-	
			enhance time-series	errors to identify anomalies	
			predictions for diverse	anomanes	
			rail transit equipment,		
			and a methodology for		
			establishing a suitable		
			error threshold. This		
			threshold aids in		
			detecting anomalies by		
			leveraging prediction		
			errors		
Digital	· Florin	2018	1. Digital railway is	1. the integration of	1. the integration of
Railway:	Codrut		a new concept and new	different systems and	different systems and
Trends and	Nemtanu &		paradigm which is the	transport modes based on	transport modes based on
Innovative	Marin		way to change the	the exchange of data.	the exchange of data.
Approaches	Marinov		architecture of the	The innovative approach	The innovative approach
[10]			railway systems and to	is to link the railway	is to link the railway
			push a novel approach in	vehicles to the	vehicles to the
			designing and	infrastructure and to find	infrastructure and to find
			developing new railway	the way to integrate	the way to integrate
			systems optimize the	infrastructures and	infrastructures and
			hierarchical framework	vehicles from different	vehicles from different
			using a hyper parameter.	transport modes.	transport modes.
				2. Offers a multi-	1
				objective optimization	
				approach for balancing	
				accuracy and	
				computational cost.	
		1		L	

volume 11,			,		
Title	Authors	Year	Objectives	Advantages	Disadvantages
Keeping track	Junwei Xie,	2018	1. A significant project for	1. values of posteriori	
of railway	Fan Yu,		many reasons and	and priori risks, it is	the operator, an
safety and the	Hanxiang		scheduled to be	possible to characterized	individual, or a customer;
mechanisms	Wang, and		2. complete within a five-	and predictedsafety of the	2. No reliable system
for risk	Haotian		year period (Network	railway traffic.	produced
[12]	Zheng		Rail 2015). The new		
			control centres will be		
			highly		
			3. automated and driven		
			by the integration of		
			computer-based		
D i f	D	2022	information technology	1 (7)	1 0 11 1 0 11
Design of	Deepa No Deceta	2022	1. In this work, wheel		1. Sensitivity of Fiber
Temperature	N; Preeta		temperature warning		Bragg Grating is observed
Monitoring for	Sharan; Shwe		range is taken between		to be 13.08pm/°C for this
Wheel using	tha K. W. Th		150 °C to 300 °C and this	perform static structural	
Optical Sensor	K; Vaibhav		range to observe the		Bragg's wavelength
in Railway	Meshram		stress and strain behavior		1550nm.
Safety System			on railway wheel in	obtained gives a good understanding of	
[13]			ANSYS Workbench	•	
			software 2. Sensing	temperature distribution on wheel with respect to	
			temperature distribution	stress and strain from	
			is performed by steady	structural analysis.	
			state thermal analysis.	structurar analysis.	
Nondestructive	Gong,	2022	1. The inspection of	1. speed and efficiency	Due to the complexity of
Testing	W.;	2022	rail defects should feature	requirements, inspecting	the mechanisms that
Technologies	Akbar,		high sensitivity since it is	rails is non-contact. This	cause rail damage.
for Rail	M.F.;		required to detect sub-	way, the inspection can be	
Inspection: A	Jawad,		surface oblique cracks	carried out quickly and	
Review. [14]	G.N.;		and internal damages .	efficiently using movable	
[]	Mohame		2. The inspection	inspection wagons .	
	d,		should cover the entire	inspection wagons .	
	M.F.P.;		cross-section of the rail,		
	Wahab		from the contact surface,		
			through the internal		
			waist, to the rail bottom.		
			Moreover, particular		
			areas such as switch tips		
			and welded joints		
			represent a challenge		
			complex structures and		
			inherent changes in		
			material properties.		
Experimental	Sharma, S.K.;	2023	1. This study investigates the	1. takes into account the	1. Despite their efficacy in
and	Sharma, R.C.; Choi,		dynamic behavior of a rail	deformation of the	regulating flexible body
Mathematical Study of	Y.; Lee, J		vehicle through a combined approach of experimental and	flexible components of	modes, the approaches described above have
Flexible–Rigid	1., LCC, J		simulation analyses using a	the vehicle.	marginal influence on
Rail Vehicle			multi- rigid–flex body	2. By analyzing the	controlling stiff body
Riding Comfort			model. Mathematical models	vehicle's behaviors under	modes, which still affect
and Safety			are developed to encompass	different conditions,	ride comfort.
. [15]			the car body, bogie frame,	engineers can optimize	2. Despite their efficacy in
			and wheel axle, Specially	the vehicle's design to	regulating flexible body
			tailored for rail vehicles	improve performance,	modes, the approaches
			possessing both rigid- flexible and multi-rigid	safety, and efficiency.	described above have marginal influence on
			characteristics.		controlling stiff body
					modes, which still affect
					ride comfort.
			l		

III. CONCLUSION

In conclusion, The deployed creature detection system was utilized to oversee railway areas susceptible to accidents caused by events like wildlife crossings, vehicle collisions, or falling trees.. Placed inaccidentprone zones, the system utilized image processing technology to provide real- time imagery. We assessed the system's performance under actual conditions and utilized image processing algorithms to determine the The current condition or status of the train.and identify surrounding objects. This information servesas a valuable aid for train operators, enabling them tohalt the train and prevent accidents that endanger creatures on the track.

REFERENCES

[1] H. Gao, J. Shi, C. Bao, P. Li and G. Chen, "Fault prediction of track circuit compensation capacitor based on MFO-LSTM," 2023 CAA Symposium on Fault Detection, Supervision and Safety for Technical Processes (SAFEPROCESS), Yibin, China, 2023.

[2] M. Xiao and B. Liu, "Fault Diagnosis of Jointless Track Circuit Based on Adaptive Noise Completely Integrated Empirical Modal Decomposition and Deep Belief Network," 2023 4th International Conference on Intelligent Computing and Human-Computer Interaction (ICHCI), Guangzhou, China, 2023.

[3] H. ALawad and S. Kaewunruen, "Unsupervised Machine Learning for Managing Safety Accidents in Railway Stations," in IEEE Access, vol. 11.

[4]. Eckel et al., "Implementing a Security Architecture for Safety Critical Railway Infrastructure," 2021 International Symposium on Secure and Private Execution Environment Design (SEED), Washington, DC, USA, 2021,

[5]T. K. Rajan, S. Karthick, S. Nirmal, S. N. Kumar and S. Senthilmurugan, "IoT Based Remote Surveillance For Animal Tracking Near Railway Tracks," 2023 International Conference on Networking and Communications (ICNWC), Chennai, India, 2023,

[6] Zhang, J. Fan, J. Zhang, D. W. K. Ng, Q. Sun and B. Ai, "Performance Analysis and Optimization of NOMA-Based Cell-Free Massive

MIMO for IoT," in IEEE Internet of Things Journal, vol. 9, no. 12,

[7] Fong, H. Kim, A. C. M. Fong, G. Y. Hong and K. F. Tsang, "Reliability Optimization in the Design and Implementation of 6G Vehicle-to-Infrastructure

Systems for Emergency Management in a Smart City Environment," in *IEEE Communications Magazine*, vol. 61.

[8] H. R. Chi, C. K. Wu, N. -F. Huang, K. -F. Tsang and A. Radwan, "A Survey of Network Automation for Industrial Internet-of-Things Toward Industry 5.0," in *IEEE Transactions on Industrial Informatics*,

[9] Z. Yang, F. Schmid and C. Roberts, "Assessment of railway performance by monitoring land subsidence," *6th IET Conference on Railway Condition Monitoring (RCM 2014)*, Birmingham, 2014.

[10] K. Wang et al., "Wireless Data Transmission Method of Earthquake Early Warning Information in High Speed Railway,"2019 Chinese Automation Congress (CAC), Hangzhou, China,2019

[11]J. Guo, X. Wang, Y. Zhang and Y. Yang, "Future prospects on the intelligent monitoring technologies for railway signalling systems in China," 6th IET Conference on Railway Condition Monitoring (RCM 2014), Birmingham, 2014.

[12] Y. Lian-bao, L. Ping, M. Xiao-ning, L. Xin-qin, X. Rui and W. Zhe, "ES-based full text retrieval and analysis of railway accident fault tracking report," 2017 7th IEEE International Symposium on Microwave, Antenna, Propagation, and EMC Technologies (MAPE), Xi'an, China, 2017,

[13]Z. Song, J. Ding, Y. Wang, X. Sun, B. Sun and Z. Zhong, "Measurement-Based Doppler Analysis in Viaduct Scenarios for Railway," 2021 13th International Symposium on Antennas, Propagation and EM Theory (ISAPE), Zhuhai, China, 2021

[14]A. P. Marugan and F. P. G. Marquez, "System management for remote condition monitoring in railway systems," 6th IET Conference on Railway Condition Monitoring (RCM 2014), Birmingham, 2014.

[15]S. L. Ho et al., "A Comprehensive Condition Monitoring of Modern Railway," 2021 IET International Conference On Railway Condition Monitoring, Birmingham, UK, 2021, pp. 125-129.