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Abstract- Air constitutes a vital element for life on our planet, and the air quality in a given area significantly 

impacts the well-being of its residents. The issue of pollutions of air poses a substantial threat to both person 

health and the surrounding. If this ongoing trend of air pollution persists, it can lead to several severe 

consequences for the Earth's atmosphere, including an increase in global temperatures that can have 

detrimental effects on life. The ramifications of air contamination encompass global warming, the 

greenhouse effect, and a host of respiratory ailments, including bronchitis and lung cancer. To evaluate 

quality of the air in a specific region, the Air Quality Index (AQI) serves as a key indicator. The proposed 

approach seeks to predict AQI values using Artificial Neural Networks (ANN) and regression models. 

Additionally, it aims to forecast the concentration of the primary pollutant responsible for influencing AQI in 

a given area. The ability to predict future air quality, as indicated by AQI, is crucial for effective air quality 

monitoring, incorporating factors such as pollutant levels, temperature, relative humidity, and more. 

Forecasting future air quality and determining the primary pollutant's concentration aids in preventing the 

deterioration of air quality by addressing pollutant sources. Multiple neural network algorithms, including 

feedforward neural networks, cascade forward neural networks, and Elman recurrent neural networks, are 

employed. A machine learning ensemble approach combines these neural network models to enhance 

accuracy compared to the existing models, which predominantly rely on feedforward neural networks. This 

proposed machine learning (ML) technique has demonstrated superior accuracy compared to existing 

methods, as measured by various metrics such as Correlation Coefficient (R), Root Mean Square Error 

(RMSE), Mean Absolute Error (MAE),  Mean Absolute Percent Error (MAPE),  and Index of Agreement 

(IA). 
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1. INTRODUCTION 

 

Air quality monitoring and prediction are essential for understanding and managing the impact of pollutants on 

the environment and human health. Monitoring provides direct measurements of air quality, while prediction 

models offer valuable insights into the temporal and spatial distribution of pollutants. Air quality models are 

cost-effective tools used to estimate air quality standards, making them crucial for regulatory officials to 

evaluate emissions' effects on ambient air quality and develop strategies to meet quality requirements . 

 

Air quality models are mathematical representations of pollutant transport, diffusion, and chemical reactions 

originating from pollution sources. They incorporate various parameters affecting pollutant concentrations at 

different distances downwind of emission sources. These models use input data to describe emissions, 

meteorological conditions, and topography to generate air quality forecasts. Depending on the complexity of 

input variables, models can be simple or advanced, with advanced models suited for scenarios involving 

photochemical air pollution, dispersion in complex terrain, and long-range pollutant transport. Simpler models 

are better suited for predicting particulate matter pollutants downwind of sources. 

 

Air quality predictions inherently carry a higher degree of uncertainty compared to other forecasts because they 

must account for meteorological variables as well as pollutant concentrations. Forecasting models reduce 

uncertainties by utilizing prior information and adjusting the model with additional data, such as past 
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measurement values and meteorological parameters. Among the pollutants, carbon monoxide (CO) and fine 

particulate matter with aerodynamic diameters less than 10 µm (PM10) and 2.5 µm (PM2.5) are commonly 

predicted. 

 

Monitoring air quality through measurements provides valuable information about the air we breathe. Long-

term monitoring is particularly useful for identifying patterns that inform air quality control policies, including 

spatial pollution disparities and temporal variations. While monitoring itself doesn't reduce pollution, it helps 

identify its sources and levels and assess the effectiveness of pollution control efforts. Monitoring units are 

established in areas with significant air pollution issues, collecting large volumes of data over time. The 

challenge is to interpret and validate this data effectively, and this is where Machine Learning (ML) comes into 

play. 

 

ML is a powerful tool for interpreting complex, high-dimensional datasets and is particularly suitable for air 

quality forecasting. ML algorithms can create precise predictive models from training data, making them 

adaptable to various tasks (Zhu D, 2018). The research aims to investigate the applicability of ML techniques in 

the operational conditions of air quality monitoring, specifically for predicting the daily peak concentration of a 

major pollutant using data from monitoring stations. 

 

These forecasting models, incorporating ML techniques, can serve as efficient decision support systems in air 

quality monitoring centers, enabling proactive regulation enforcement when Air Quality Index (AQI) values 

exceed acceptable levels, thus preventing potential health risks to urban residents. ML offers researchers and air 

quality practitioners a powerful tool for management and prediction in this critical field.  

 

2. NEURAL NETWORKS METHODS 

 

The Air pollution is an escalating global concern, notably prevalent in urban centers, stemming from diverse 

sources like household heating, increased vehicular traffic, energy generation, and industrial operations. The 

deleterious impacts of pollution on human well-being have prompted intensified scrutiny, thus emphasizing the 

importance of monitoring and assessing air quality parameters. In response to this challenge, the adoption of 

Artificial Intelligence (AI) techniques has emerged as an effective approach for modeling intricate, non-linear 

phenomena. 

 

The environmental dilemma of ambient air quality, especially in metropolitan regions of developing nations, 

has reached critical proportions. The detrimental health ramifications of pollution have necessitated a shift 

towards AI-driven methodologies, displacing traditional statistical approaches. Notably, Artificial Neural 

Networks (ANNs) have emerged as pivotal players in this transformation. ANNs are mathematical constructs, 

inspired by neural networks in the human brain, capable of learning from experiences and discerning intricate 

associations and dependencies. Their versatility and utility have been well-established for tasks involving 

modeling and prediction. 

 

Within the realm of atmospheric sciences, ANNs find a significant application in the prediction of the Air 

Quality Index (AQI), a widely adopted metric for conveying air pollution severity to the general populace. 

Numerous methodologies exist for computing the AQI, yet there is no universally applicable approach that 

accommodates all scenarios. These methods diverge in terms of pollutant considerations, sampling durations, 

air quality classifications, and breakpoint definitions. Consequently, the application of various AQI techniques 

to a common case study frequently results in substantial disparities in air quality assessments. 

 

Recent research in the realm of ANNs underscores their ability to discern patterns and grasp intricate 

relationships, rendering them a potent tool for predictive tasks. ANNs offer particular appeal owing to their 

prowess in addressing problems that hinge on extensive but not rigidly defined knowledge and vast datasets. 

Their proficiency in generalization, signifying their capability to extrapolate predictions beyond the training 

data, even amidst noise in the dataset, is a notable asset. Furthermore, ANNs, functioning as universal function 

approximators, can model continuous functions with remarkable precision, rendering them suitable for a diverse 

array of forecasting applications. 
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Numerous investigations have underscored the promise of employing Artificial Neural Network (ANN)-based 

models in the realm of air quality prediction. For instance, Huang (2021) devised a model for urban atmospheric 

air quality forecasting that amalgamated data mining with Backpropagation Neural Networks (BPN). This 

innovative hybrid approach yielded heightened predictive precision, thereby offering robust decision support for 

environmental protection agencies. Tamas et al. (2019) harnessed a hybrid model that combined Multilayer 

Perceptron (MLP) and clustering to predict pollutant concentrations, delivering enhanced peak detection 

capabilities. Osowski and Garanty (2007) introduced a hybrid model integrating ANN and regression 

techniques for daily air pollution prediction, with neural networks of SVM lineage enhancing forecasting 

accuracy. Agirre-Basurko et al. (2006) harnessed MLP-based models for real-time forecasts of O3 and NO2, 

showcasing superior performance compared to regression models. Aishwarya & Babu (2017) accentuated the 

potential of ANN models, particularly when coupled with methodologies like Genetic Algorithms (GA), to 

bolster predictive accuracy for both univariate and multivariate datasets. Ghazali & Hakim Ismail (2012) 

utilized a straightforward feed-forward neural network to predict air quality, achieving a reasonable level of 

performance. Rahman et al. (2013) conducted a comparative analysis of ANN, ARIMA, and Fuzzy Time Series 

(FTS) for Air Pollution Index (API) prediction, with ANNs registering the smallest forecasting error. Al-Alawi 

et al. (2008) showcased a hybrid model that integrated Multiple Linear Regression (MLR), Principal 

Component Analysis (PCA), and ANN to predict lower atmosphere ozone concentrations, culminating in 

enhanced accuracy. 

 

Collectively, these investigations underscore the potential of ANNs in the domain of air quality prediction, 

particularly concerning individual pollutants and the Air Quality Index (AQI). ANNs exhibit an aptitude for 

modeling intricate relationships and capturing non-linear patterns, rendering them a valuable tool for addressing 

the multifaceted challenges associated with air quality forecasting . 

 

                                  METHODOLOGY 

 
 

 
      Fig  General methodology for models 
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STEP 1: 

 

The requisite data is retrieved from the official websites of the pollution control board or environmental agency. 

This dataset comprises hourly measurements of pollutant concentration, AQI values, and meteorological data. 

Employing the specified concentration thresholds for each pollutant, outliers are identified and subsequently 

eliminated from the dataset. 

 

STEP 2: 

 

This phase of the study encompasses the identification of principal pollutants and the initial data processing. 

The primary pollutants, as designated by the CPCB or EPA for a specific geographical area, were defined and 

selected for analysis. It is important to note that we encountered a challenge related to data consistency, 

specifically in terms of the availability of data with a higher number of samples (encompassing concentrations 

of primary pollutants over a greater number of days) and minimal instances of outliers, ideally none. Upon 

acquiring the dataset from the CPCB or EPA, we proceeded with data preprocessing. This preprocessing 

procedure entailed data normalization, which was implemented based on the particular modeling approach 

under consideration. For the regression algorithms employing Multiple Linear Regression (MLR), Mean 

normalization was applied, while Max-Min normalization was employed for other models. The Max-Min 

normalization process adhered to the formulation detailed in Equation 3.11. 

 

Xn=        ( Xi-X min/( X max-X min) 

    

    

STEP 3: 

 

Here, Xi represents the ith data sample, Xmin denotes the minimum value in the dataset, and Xmax signifies 

the maximum value within the dataset. 

 

Following the pre-processing stage, the pertinent input variables, encompassing pollutant concentrations and 

historical data, are thoughtfully selected for the predictive modeling. Subsequently, the proposed models are 

trained using these chosen input predictors and an appropriate number of samples derived from the dataset. The 

trained models are then put to the test using the remaining dataset samples for evaluation.samples. 

 

STEP 4: 

 

Following the rigorous training and comprehensive testing of the proposed models using a rich dataset, the 

anticipated outcomes encompass the forecasting of Air Quality Index (AQI) and pollutant concentrations. 

Subsequently, an exhaustive evaluation of the model's efficacy transpires, leveraging a suite of performance 

metrics including the coefficient of determination (R), Mean Absolute Error (MAE), Mean Absolute Percentage 

Error (MAPE), Root Mean Square Error (RMSE), and Index of Agreement (IA). This investigation upholds the 

standards of scientific inquiry and analysis, thus advancing our understanding in the realm of air quality 

modeling. 

 

 

3  METHODOLOGY 
 

In order to predict the Air Quality Index (AQI) for a particular city, we introduced Artificial Neural Network 

(ANN) predictors, trained utilizing the Conjugate Gradient Descent method, as pioneered by Hestenes in 1952. 

Our approach encompasses the implementation of multiple neural network models, including Multilayer 

Perceptron (MLP), Elman, Radial Basis Function Network (RBFN), and Nonlinear Auto-Regressive with 

Exogenous Inputs (NARX). These models were trained using data spanning the years 2014 to 2016 in Delhi, 

India, incorporating four pivotal pollutant levels: NO2, CO, O3, and PM10. To provide a visual representation 

of the forecasting learning methods. 

 

4  CONJUGATE GRADIENT DESCENT 
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Within the realm of neural networks, the fundamental backpropagation algorithm is harnessed to facilitate the 

adjustment of weights. It ensures that the weights align with the steepest gradient descent direction, effectively 

negating the gradient. This direction, marked by a rapid reduction in the objective function, offers the most 

direct route for determining a new direction vector. However, it's imperative to recognize that, even though the 

function exhibits rapid decrease in the negative gradient direction, convergence can be rather sluggish. To 

counteract this challenge and expedite the convergence process, a line search technique, originally introduced 

by Box in 1969 and subsequently refined by the work of Arora and Snyman in 2006, is applied. This technique 

operates along conjugate directions, surpassing the efficacy of steepest gradient descent. 

 

Conjugate Gradient Descent (CGD), as introduced by Fletcher and Reeves in 1964, stands as a well-regarded 

iterative technique that incorporates adaptive learning rates or step sizes, which are determined based on the 

conjugate direction following each iteration of the training process. This approach ensures consistent progress 

toward the solution for each step, aligning with the new direction indicated by gradients. Remarkably, CGD can 

function as a direct method, providing exact solutions after a series of iterations. Additionally, it operates as an 

iterative method, delivering progressively improving approximations to the exact solution. This adaptability can 

lead to the attainment of the desired tolerance level within a relatively small number of iterations, especially 

when compared to the overall problem size. 

 

5. NEURAL NETWORKS 
 

Artificial Neural Networks (ANN) stand out as the predominant machine learning algorithms employed for time 

series forecasting, as substantiated by the work of Zhang et al. in 1998. These models comprise an assembly of 

neurons interconnected within the neural network, fostering intricate connectivity. 

 

Within these models, distinct layers come into play, featuring input and output layers as the visible interfaces. 

Nestled between these two prominent layers is the hidden layer, an integral component. It's noteworthy that the 

input layer invariably assumes the role of the first layer, with the output layer culminating the sequence. An 

intriguing facet of neural network predictors lies in the direct relationship between their efficiency and 

complexity, particularly concerning the quantity of neurons in the hidden layer. An increase in the number of 

neurons in the hidden layer invariably enhances both the efficacy and intricacy of the neural network predictor. 

 

5.1 Multilayer Perceptron (MLP) 

 

The Multilayer Perceptron (MLP) stands as the foundational artificial neural network, serving as a critical 

component of many neural network architectures. It operates as a feedforward model, effectively mapping 

inputs to appropriate outputs. In the MLP structure, layers are interlinked, and the connections between them are 

regulated by parameters or weights, as depicted in the fundamental architecture presented in Figure 5.2. In the 

context of this study, the Conjugate Gradient Descent method is applied to determine the weights governing the 

connections between neurons within each layer. The learning process within each neuron involves the 

adjustment of weights following the processing of each input sample. This adjustment is contingent on the 

magnitude of the error generated in the output layer concerning the anticipated outcome, aligning with the work 

of Xu et al. in 2002. Each set of pollutant levels, encompassing NO2, CO, O3, and PM10, constitutes an input 

to the MLP, with activation values from each input layer neuron being propagated to all neurons within the 

hidden layer. In turn, the neuron within the output layer draws upon the combined activations of the hidden 

layer neurons to calculate the Air Quality Index (AQI). Notably, the activation function employed at each 

neuron adheres to a logistic function, guided by the governing equation: 

  

The errors cost function is: 

         

where the variables k t and k y represent observed and predicted value of AQI respectively 
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Fig. 5.2 Multilayer perceptron neural network 

 

5.2 Performance Evaluation 

 

In order to assess the effectiveness of each neural predictor, a set of statistical criteria has been selected, 

encompassing Mean Absolute Error (MAE), Mean Absolute Percent Error (MAPE), the Correlation Coefficient 

(R), Root Mean Square Error (RMSE), and the Index of Agreement (IA). These evaluation metrics are defined 

by the following equations: 

 

 
  

where n , "n" signifies the total count of data points, "k_y" represents the predicted value, and "k_t" designates 

the observed value. 

 

 
 

Within the framework of these equations, "n" corresponds to the total number of data points, while "k_y" 

denotes the predicted value, and "k_t" signifies the observed value 

  

In this context, "n" represents the total count of data points, "k_y" designates the predicted value, and "k_t" 

signifies the observed value. 
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where n , In this context, "n" refers to the total count of data points, "k_y" denotes the predicted value, and "k_t" 

signifies the observed value. Furthermore, "t" represents the average of the observed data, while "y" 

corresponds to the average of the predicted data. 

 

  
 

In this context, "n" represents the total count of data points, "k_y" designates the predicted value, and "k_t" 

signifies the observed value. Additionally, "t" corresponds to the average of the observed data. 

 

The assessment of the testing data holds significance as it serves as a gauge of accuracy for each neural network 

predictor. In pursuit of the optimal model, the most favourable outcomes are characterized by the lowest MAE, 

MAPE, RMSE values, and the highest R and IA values. 

 

6. RESULTS & COMPARISON 
6.1  Performance of MLP 

 

The initial neural network model utilized in this study for forecasting the Air Quality Index (AQI) is the 

Multilayer Perceptron (MLP). The specific architecture adopted for the MLP in this research is configured as 4-

4-1, encompassing the input, hidden, and output layers. The network is subjected to 500 epochs of training, 

facilitated by the Conjugate Gradient Descent method, leading to the determination of optimal weights. 

 

The training outcomes of the MLP neural network model concerning AQI prediction in Delhi are illustrated in 

Figure 6.1. Meanwhile, the test results for the MLP neural network model's performance in forecasting Delhi's 

AQI are presented in Figure 6.2. The regression plots, showcasing the data samples for both the training and 

testing phases, are depicted in Figure 6.3 and Figure 6.4, respectively. 
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Fig. 6.1 Observed and predicted  AQI training samples of MLP 

 

 

 
 

                       Fig. 6.3 Regression plot of MLP training samples 

 

 

The regression plots, as depicted in Figure 6.5, exemplify the connection between the observed and predicted 

values as generated by the MLP neural network model. These plots vividly demonstrate that both the training 
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and testing datasets exhibit a commendable alignment. The performance metrics associated with the MLP 

model are computed as follows: MAE = 17.72, MAPE = 9.73%, R = 0.955, RMSE = 25.08, and IA = 0.97. 

 

  Table 6.1 AQI Performance comparison of neural network models 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.5 Performance comparison of various network models 
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7. CONCLUSION 

 

Air Quality Index (AQI) forecasting plays a crucial role in raising awareness among individuals and environmental 

agencies regarding the potential harm associated with poor air quality. In the course of this study, several neural 

network models, including Multilayer Perceptron (MLP), Elman's Recurrent Neural Network, Radial Basis 

Function Network (RBFN), and Nonlinear AutoRegressive with eXogenous (NARX) models, were employed to 

predict AQI. The comparative efficiency of these models is summarized in Table 6.1. 

 

Notably, the RBF neural network model outperformed the others, delivering more accurate AQI predictions. It 

achieved impressive performance metrics, with MAE = 7.33, MAPE = 4.05%, R = 0.993, RMSE = 9.69, and IA = 

0.99. These findings are illustrated in Figure 5.22, showcasing the test results for all the neural network models 

considered. 

 

This research affirms the effectiveness of Artificial Neural Networks (ANN) as a powerful predictive 

methodology. Furthermore, it suggests that by harnessing ensemble techniques, despite the associated 

computational complexity, the efficiency of these neural network models can be substantially enhanced. 
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