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Abstract - The governing equations of fluid flow are hyperbolic and flows are characterized by the preferred 

direction of information propagation. As the analytical solution of these non-linear partial differential 

equations is not possible in most cases, a numerical solution is the only alternative. Computation of flows 

governed by compressible Euler equations around supersonic aircraft and launch vehicles are some 

situations where upwind methods are effective. All these schemes, however, are not uniformly good for all 

situations. Different aspects of these methods such as CPU time-wise efficiency, accuracy, and robustness are 

expected to be brought out by the present study to assist a CFD investigator to decide upon the scheme to be 

used for a particular physical situation. Keeping in this view quasi-one-dimensional nozzle problem is 

studied. 
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1. INTRODUCTION 
 
For numerical analysis of flow at high Mach numbers around objects like missiles, launch vehicles etc., Euler 

equations are frequently used. The family of upwind schemes, whose origin may be taken back to Courant, 

Isaacson and Reeves (1952), is directed towards the introduction of the physical properties of the flow equations 

into discretized formulation and has led to the family of techniques known as Upwinding.  

As analytical solution of these non-linear partial differential equations is not possible in most cases, a numerical 

solution is the only alternative. The numerical method of one-sided differencing is upwind scheme. As upwind 

schemes are well known for their ability to capture shocks and compute flows over a wide range of speed and 

geometry, their popularity is on the rise and considerable research is going on to refine technique and extend 

their range of applicability. They are extensively used in aerodynamic design of different aerospace 

configurations. 

There are different upwind schemes Van Leer’s scheme (1988), Zha-Bilgen scheme (1993), Advection 

Upstream Splitting method (AUSM), Steger Warming (1981), and MacCormack schemes (1969) were used to 

solve the quasi-one-dimensional nozzle problem. Upwind schemes were tested for different problems by 

different authors. Harinath Reddy N, Venkata Sowjanya M (2019) were tested upwind schemes for shock tube 

problem. 

1.1 Quasi-one-dimensional Nozzle: 

The nozzle geometry for which computations have been carried out is a series of two-dimensional converging-

diverging nozzles designed and tested at NASA Langley Research Center, namely, nozzle A2 and the geometry 

as shown in Figure 2. The geometry is formed by a plane upstream and downstream of the throat region with 

slope angles of and, respectively. In the throat region, it has a circular-arc surface for transition. The geometry is 

symmetric about the central axis plane, and only upper half is shown here.    
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Fig.1. Nozzle – Grid point Distribution 

 

 

Fig.2. Nozzle geometry for problem 

 

The formulations describing the geometry are 

y = tan(θ)x + hi               for 0 ≤ x ≤ L1  

y = yc -sqrt(rc-(x-xc)
2
   for L1 ≤ x ≤ L2 

y = tan(β)(x-xt) + yt   for L1 ≤ x ≤ L2 

 

where θ = -22:33
o
 , β= 1:21

o
 , L1 = 4:74 cm, L2 = 5:84 cm,        

L3 = 11:56 cm, xt = 5:84 cm, yt = 1:37 cm, xc = 5:78 cm, 

yc = 4:11 cm, rc = 2:74 cm, ht = 1:37 cm, and hi = 3:52 cm. 
 

2. NUMERICAL PROCEDURE 

The governing equations are one-dimensional Euler equations and the conservation form of these equations is 

given below. 

  

  
 

  

  
   

where U, F are vectors containing conservative variables and conservative fluxes respectively and S is the cross-

sectional area and are given by, 
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where ρ, ρu, e = mass, momentum, total energy per unit volume.  And e is defined as, 

  
 

   
 

 

 
    

The above equation is solved by using different schemes for a given standard problem, quasi, one-dimensional 

nozzle problem 

 

To solve a nozzle problem, it is divided into a number of grid points in the x-direction as shown in the Figure 1. 

The spacing between the adjacent grid points is x. Now assume the flow field variables at all grid points as 

initial conditions at time t = 0. For faster time marching procedure, one has to choose the initial conditions very 

carefully. Generally initial conditions should be closer to final steady-state results for faster convergence. The 

first step in solving the nozzle problem is to feed the nozzle shape and initial conditions into the program. 

Calculate all the flow properties for the next time step and compare them with the previous time. Repeat this 

procedure until steady-state is reached. 

 

For the subsonic boundary conditions at the entrance, the velocity is extrapolated from the inner domain, and the 

other variables are determined by the total temperature and total pressure. For supersonic exit boundary 

conditions, all of the variables are extrapolated from inside of the nozzle. The analytical solution was used as the 

initial ow eld. The computation is proceeded using global time step in time accurate fashion. The nozzle contour 

can be input as a function y(x) measured from the centerline. For an axisymmetric nozzle, the function A(x) is 

just, A(x) = y
2
(x). On the other hand, if a 2-D nozzle is assumed, A(x)=2 y(x). To solve, a computer code in C 

has been used. The solution has been obtained for the geometries shown above by running the code written in C 

until the steady state is obtained. 

 

2.1 Stability (CFL) Condition: 

The stability condition for the convergence of any numerical solution is known as CFL (Courant, Friedrich, and 

Lewy) condition. Every scheme requires the specification of a time increment, Δt. For explicit methods, the 

value of Δt cannot be arbitrary, rather it must be less than some maximum value allowable for stability. 

      
  

   
  where λ is the Courant number. 

CFL criterion is that Δt must be less than or at most equal to the time required for a sound wave to propagate 

between two adjacent grid points. i.e.,  

     
  

   
  

 

3. RESULTS AND DISCUSSION 

 

Figures 3 and 5 shows the variation of Mach number and flow rate as a function of distance for the steady 

subsonic-supersonic isentropic flow through a nozzle with different schemes for problem 1. From Figure 5, it is 

clear that the flow rate computed with Van Leer's scheme, Steger and Warming scheme, and MacCormack's 

scheme is closer to the analytical result but AUSM and Zha-Bilgen are farther from it. Important conclusions 

can be drawn by studying the variation of Mach number at the throat region. It is clearly demonstrated in Figure 

4. 
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Fig.3. Comparison of Mach number variation for different schemes 

 

MacCormack's scheme agrees the best with analytical result at the throat region, but with a little jump. This 

scheme is performing extremely well when there is no shock and contact discontinuity. Van Leer's scheme also 

agrees well with analytical result throughout, but at the transition region there is a large jump. Steger and 

Warming scheme perform well without any jump at the throat region. But AUSM scheme is giving a small jump 

at the throat region and is deviating at the outlet, similarly Zha-Bilgen scheme is also deviating more from the 

analytical results at outlet. 

 

 

Fig.4. Comparison of Mach number variation at throat region of nozzle 
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Fig.5. Comparison of Mass flow region variation for different schemes 

 

4. CONCLUSIONS 
 
 For mixed subsonic-supersonic flow without shocks (as in the nozzle), the results obtained with Steger and 

Warming scheme is closer to the analytical result as compared to other upwind schemes. It tells us that Steger 

and Warming scheme works well, when there is no shock and contact discontinuity. It is clear from the Figure 3. 

Van Leer's scheme gives a large jump at the transition region (Fig. 4). The computation of the problems 

involving shock and contact discontinuity with different schemes shows that shock and contact discontinuity is 

greatly smeared with almost all the schemes but VanLeer's scheme performs better. For mixed subsonic-

supersonic flow without shocks. Steger and Warming scheme perform well and AUSM gives a small jump at 

the transition region. Thus, no scheme is seen to be uniformly good in all situations and care has to be exercised 

before choosing the scheme to be used. 
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