
International Journal For Technological Research In Engineering
Volume 11, Issue 9, May-2024 ISSN (Online): 2347 - 4718

www.ijtre.com Page 103

IMPLEMENT QUALITY ATTRIBUTES IN SOFTWARE

ENGINEERING

Soniya S Dadhania

Lecturer in Computer Engineering

R C Technical Institute, Ahmedabad

ABSTRACT: Quality attributes are the overall

factors that affect run-time behaviour, system

design, and user experience. They represent areas

of concern that have the potential for application

wide impact across layers and tiers. Some of these

attributes are related to the overall system design,

while others are specific to run time, design time,

or user centric issues. The extent to which the

application possesses a desired combination of

quality attributes such as usability, performance,

reliability, and security indicates the success of

the design and the overall quality of the software

application. When designing applications to meet

any of the quality attributes requirements, it is

necessary to consider the potential impact on

other requirements. You must analyse the trade-

offs between multiple quality attributes. The

importance or priority of each quality attribute

differs from system to system; for example,

interoperability will often be less important in a

single use packaged retail application than in a

line of business (LOB) system.

Keyword: Conceptual integrity, Maintainability,

Reusability, Availability, Interoperability

1. INTRODUCTION

The difference between an amateur product and a

carrier grade product is not much in functionality; it

is in Quality. For any serious business to depend on

a piece of software to continue to function and

evolve as needed a long list of quality attributes or

'abilities' are required. The list seems to be long,

but each ability is vital. If you get stuck with

something that doesn't have any one of the required

abilities, that inability manifests itself in different

problematic ways. It is imperative for operators to

look at the products they are purchasing from all

the quality attributes that may affect them in future.

While most products claim to have similar

functionality, it is important for the prudent buyer

to ask tough questions about each individual

required quality attribute and look under the hood

on to the building blocks to see if the product they

are buying really has the required quality attributes

to deliver on all areas. Following is a list of

commonly expected quality attributes with an

introduction on how AdvOSS uses its technology

and architecture to achieve them. These quality

attributes are categorized with respect to the roles

that typically have an interest in learning about

these aspects of carrier grade software.

2. LIST OF ATTRIBUTES

High Availability

High Availability is the measure of the quality of

software to keep functioning in spite of problems.

Since the 'problems' can be of many types, different

technologies work in tandem to achieve high

availability for the overall system.

 Redundancy

AdvOSS uses different technologies in

combination to achieve redundancy in the system

and make sure that the redundancy is used towards

availability when needed.

Disaster Recovery

Disaster Recovery is the ability of the software to

continue to function when a Disaster occurs.

Security

Security is the ability of the software to remain

protected from unauthorized access. This includes

both change access and view access.

Flexibility

Flexibility is the ability of software to adapt when

external changes occur.

Traceability

Traceability is the ability of the Software to offer

insight into the inner processing when required. A

higher level of traceability is required at time of

debugging a problem or at times of new

interoperability testing. AdvOSS Switching and

AAA products offer layers of traceability that can

be turned on by a Maintenance engineer. Going

from normal error only traces, to warning traces, to

activity traces to full verbose tracing, AdvOSS

products make it easy for the engineer to be able to

see what is going under the hood.

International Journal For Technological Research In Engineering
Volume 11, Issue 9, May-2024 ISSN (Online): 2347 - 4718

www.ijtre.com Page 104

Maintainability

Maintainability is the ability of a software to adapt

to changes, improve over time, correct any bugs

and be proactively fixed through preventive

maintenance.

Testability

Testability is the ability of software to be tested

thoroughly before putting into production.

Although AdvOSS does internal testing before

releasing any new versions, they can never be sure

to work at an Operator's production systems

without testing. AdvOSS offers a SandBox

environment for each of its products. The

Debugging Sandbox can be configured against

given rules to siphon selected traffic to staging

servers for real production simulated testing. This

gets very useful in testing the new releases before

production.

3. RELATIONSHIPS BETWEEN

ATTRIBUTES

Each of the attributes examined has evolved within

its own community. This has resulted in

Inconsistencies between the various points of view.

3.1 Dependability Vis-a-vis Safety

The dependability tradition tries to capture all

system properties (e.g., security, safety) in terms of

dependability concerns—i.e., defining failure

as not meeting requirements.‖ It can be argued that

this is too narrow because requirements could be

wrong or incomplete and might well be the source

of undesired consequences. A system could allow

breaches in security or Safety and still be called

dependable. The safety engineering approach

explicitly considers the system context. This is

important because Software considered on its own

might not reveal the potential for mishaps or

accidents.

Types of factor

• the planes must be too close

• the pilots are unaware of that fact or

• the pilots are aware but

• fail to take effective evading action

• are unable to take effective evading action

3.2 Precedence of Approaches

Safe software is always secure and reliable —

Neumann [Neumann 86] presents a hierarchy of

reliability, safety, and security. Security depends on

reliability (an attribute of dependability) and safety

depends on security, hence, also reliability.

• A secure system might need to be reliable

because a failure might compromise the

system’s security (e.g., assumptions about

atomicity of actions might be violated

when a component fails).

• The safety critical components of a system

need to be secure to prevent accidental or

intentional alteration of code or data that

were analysed and shown to be safe.

• Finally, safety depends on reliability when

the system requires the software to be

operational to prevent mishaps.

3.3 Applicability of Approaches

The methods and mind set associated with each of

the attributes examined in this report have evolved

from separate schools of thought. Yet there appear

to be common underpinnings that can serve as a

basis for a more unified approach for designing

critical systems.

• Safety and dependability are concerned

with detecting error states (errors in

dependability and hazards in safety) and

preventing error states from causing

undesirable behaviour (failures in

dependability and mishaps in safety).

• Security and performance are concerned

with resource management (Protection of

resources in security and timely use of

resources in performance.)

The previous section offered examples of the

applicability of methods usually associated with

one attribute to other attributes. The applicability of

methods developed for one attribute to another

attribute suggests that differences between

attributes might be as much a matter of sociology

as technology. Nevertheless, there are

circumstances for which an attribute-specific mind

set might be appropriate.

Examples include the following:

• The dependability approach is more

attractive in circumstances for which there

is no safe alternative to normal service—a

service must be provided (e.g., air traffic

control).

• The safety approach is more attractive

where there are specific undesired events

— an accident must be prevented (e.g.,

nuclear power plant).

• The security approach is more attractive

when dealing with faults of commission

rather than omission — service must not

International Journal For Technological Research In Engineering
Volume 11, Issue 9, May-2024 ISSN (Online): 2347 - 4718

www.ijtre.com Page 105

be denied, information must not be

disclosed.

4. QUALITY ATTRIBUTES AND

SOFTWARE ARCHITECTURE

A (software) system architecture must describe the

system’s components, their connections and their

interactions, and the nature of the interactions

between the system and its environment.

Evaluating a system design before it is built is good

engineering practice. A technique that allows the

assessment of a candidate architecture before the

system is built has great value. The architecture

should include the factors of interest for each

attribute. Factors shared by more than one attribute

highlight properties of the architecture that

influence multiple attribute concerns and provide

the basis for trade-offs between the attributes. A

mature software engineering practice would allow a

designer to predict these concerns through changes

to the factors found in the architecture, before the

system is built. All the attributes examined in this

report seem to share classes of factors. There are

events (generated internally or coming from the

environment) to which the system responds by

changing its state. These state changes have future

effects on the behavior of the system (causing

internal events or responses to the environment).

The environment‖ of a system is an

enclosing system,‖ and this definition applies

recursively, up and down the hierarchy. In addition

to evaluating individual patterns, it is necessary to

evaluate compositions of patterns that might be

used in architecture. Identifying patterns that do

not compose‖ well (i.e., the result is difficult to

analyze or the quality factors of the result are in

conflict with each other) should steer a designer

away from difficult architectures, towards

architectures made of well-behaved compositions

of patterns. In the end, it is likely that we will need

both quantitative and qualitative techniques for

evaluating patterns and architectures. Promising

quantitative techniques include the various

modeling and analysis techniques, including formal

methods mentioned in this report. An example of a

qualitative technique is being demonstrated in a

related effort at the SEI. The Software Architecture

Analysis Method (SAAM) illustrates software

architecture evaluations using scenarios (postulated

set of uses or transformations of the system).

Scenarios are rough, qualitative evaluations of

architecture; scenarios are necessary but not

sufficient to predict and control quality attributes

and have to be supplemented with other evaluation

techniques.

5. CONCLUSION

The qualities presented those most often the goals

of software Architects. Since their definitions

overlap, we chose to characterize them with general

Scenarios. We saw that qualities can be divided

into those that apply to the system, those that apply

to the business environment, and those that apply to

the architecture itself. In the next chapter, we will

explore concrete architectural approaches for

following the path from qualities to architecture.

REFERENCE

[1] Al-Kilidar, H., Cox, K., &Kitchenham, B.

(2005).The use and usefulness of the

ISO/IEC 9126 Quality Standard. In

International symposium on empirical

software engineering (pp. 126–132).

Noosa Heads,.Australia: IEEE Computer

Society.

[2] Ameller, D., Galster, M., Avgeriou, P.,

&Franch, X. (2013). The role of quality

attributes in service- based systems

design. In 7th European conference on

software architecture (ECSA) (pp. 200–

207). Montpellier, France: Springer.

[3] Bachmann, F., & Bass, L. (2001).

introduction to the attribute driven design

method. In 23rd international conference

on software engineering (pp. 745–746).

IEEE Computer Society. Bachmann, F.,

Bass, L., Klein, M., & Shelton, C. (2005).

[4] Designing software architectures to

achieve quality attribute requirements. IEE

Proceedings Software, 152, 153–165.

[5] Balasubramaniam, S., Lewis, G. A.,

Morris, E., Simanta, S., & Smith, D. B.

(2009). Challenges for assuring quality of

service in a service-oriented environment.

[6] Barbacci, M. R., Ellison, R. J., Lattanze,

A. J., Stafford, J. A., Weinstock, C. B., &

Wood, W. G. (2003). Quality attribute

workshops (QAWs), third edition.

Technical report, SEI CMU.

[7] Basili, V., Caldiera, G., & Rombach, D.

(1994). The goal question metric

approach. In J. J. Marciniak

(Ed.),Encyclopedia of software

engineering (Vol. 1, pp. 528–532). New

York, NY: Wiley.

[8] Software quality attributes and trade-offs,

Patrik Berander, Lars-Ola Damm,

International Journal For Technological Research In Engineering
Volume 11, Issue 9, May-2024 ISSN (Online): 2347 - 4718

www.ijtre.com Page 106

Blekinge Institute of Technology June

2005

[9] A tertiary study on links between source

code metrics and external quality

attributes, Umar Iftikhar,Nauman Bin Ali,

Volume 165,January 2024

[10] Quality Attributes Optimization of

Software Architecture: Research

Challenges and Directions, Daniele Di

Pompeo University of L’Aquila, L’Aquila,

Italy, 10.1109/ICSA-C57050.2023.00061

[11] Enhancing Software Quality in

Architecture Design: A Survey- Based

Approach, Shravan Pargaonkar,

10.29322/IJSRP.13.08.2023.p14014,

August 2023

